direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Raphael Deimel

Lupe



Room: MAR 5.065
Telephone: +49.30.314-73118
Office hours: on request

Research Interests

Grasping is a peculiar topic in Robotics: on one hand we have physically motivated mechanical models which allow us to simulate complex manipulation in great detail. On the other hand, algorithms based on mechanical simulation aren't often applied to actual robot systems although these models have been around for a long time, sometimes for decades. Unfortunately, it seems, the approach of simulating on the mechanical level to find and optimize grasps seems to run into the curse of dimensionality, aggravated by the highly nonlinear behavior of collisions and contacts.

In my research I am exploring different routes of building and controlling robots. Seemingly paradoxical, increasing the complexity in the mechanics sometimes does not make the problem of grasping even more difficult, but actually simplifies it - adding the "right" mechanical complexity to an already complex interaction can make control simpler. I try to show in my research that it is possible to put this "simplifying complexity" directly into the morphology of the robotic hand. The robot's body does the heavy lifting in computation, hence we refer to this effect as "Morphological Computation".

The actual artefacts we build are so called Soft Hands. The hands are made from soft, deformable materials, provide compliant motion and complex, nonlinear deformations.

From the view of mechanics we push the frontiers of Soft Robotics, a young research field dedicated to understanding the advantages of completely soft robots. Integral to this research is the development of manufacturing methods of highly structured but soft artefacts, which are lagging far behind those of traditional rigid-bodied robotics in terms of accessibility and commercial availabillty.

From the view of Robotic Grasping we need to avoid formulating the grasping problem on a level above the mechanical description, to be able to increase morphological complexity to yield a simpler higher-level model. We investigate a possible representation using concepts such as Shape Adaptation and Environmental Constraints: Both describe patterns of interaction with real objects that are facilitated by compliant fingers and hands. Environmental Constraints are potential constraints to the free motion of the robot. Instead of viewing them as an obstacle to avoid we view them as helpful structures whose nonlinear interaction behavior (i.e. collision) can be used to increase certainty about the mechanical state of the world, such as the distance between hand and an object to grasp can be made more certain by first colliding with the surface the object rests on. 

To bootstrap robots with novel grasping strategies, we also look at already proficient graspers and manipulators: adult humans. Humans can grasp even when they don't pay attention (i.e. dedicate mental resources) or when their senses are heavily impaired. These conditions resemble the state of the art of robot perception much better than unimpaired, attentive grasping, and our research indicates that humans not only apply different grasping strategies, but that humans seek collisions with (what we call) environmental constraints.

 

Besides these core research topics, I am also interested in the interaction of acting and sensing and the ramifications on the concept of representation.

 

  • Soft Robotics
  • Hand Grasping
  • Sensorimotor Learning
  • Sensorimotor Contingencies, Machine Learning, Bayesian statistics

Awards

2014 Best Student Paper Award at the Robotics: Science and Systems.

Raphael Deimel and Oliver Brock. A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping. Robotics:Science and Systems (RSS) , 2014.


CV

  • 2012 - now PhD Student, Robotics and Biology Lab, TU Berlin
  • 2008 - 2011 Middle European interdisciplinary Master in Cognitive Science, University of Vienna / Budapest University of Technology and Economics.
  • 2004 - 2009 Bachelor of Science, Technische Informatik, Vienna University of Technology
  • 2000 - 2005 Industrial Control Systems Developer, VA Tech

Publications

Raphael Deimel and Marcel Radke and Oliver Brock. Mass Control of Pneumatic Soft Continuum Actuators with Commodity Components. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016 (in press).

Download Bibtex entry

Raphael Deimel and Oliver Brock. A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping. The International Journal of Robotics Research 35(1-3):161-185, 2016.

Download Bibtex entry

Clemens Eppner and Raphael Deimel and Jose Alvarez-Ruiz and Marianne Maertens and Oliver Brock. Exploitation of Environmental Constraints in Human and Robotic Grasping. The International Journal of Robotics Research 34(7):1021-1038, 2015.

Download Bibtex entry

Vincent Wall and Raphael Deimel and Oliver Brock. Selective Stiffening of Soft Actuators Based on Jamming. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 252-257, 2015.

Download Bibtex entry

Raphael Deimel and Oliver Brock. Soft Hands for Reliable Grasping Strategies. Soft Robotics. Springer-Verlag, chap. Soft Hands for Reliable Grasping Strategies, 211–221, 2015.

Download Bibtex entry

Raphael Deimel and Oliver Brock. A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping. Robotics:Science and Systems (RSS), 2014.

Download Bibtex entry

Raphael Deimel and Clemens Eppner and José Álvarez-Ruiz and Marianne Maertens and Oliver Brock. Exploitation of Environmental Constraints in Human and Robotic Grasping. International Symposium on Robotics Research (ISRR), 2013.

Download Bibtex entry

Raphael Deimel and Oliver Brock. A Compliant Hand Based on a Novel Pneumatic Actuator. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 01-07, 2013.

Download Bibtex entry

Raphael Deimel. Making Sense. An Integrative View on Understanding Action an Observation. Master Thesis, University of Vienna, Austria, 2011. Download Bibtex entry


Raphael Deimel. Contextual Slow Feature Extraction. Technical Report , Austrian Institute for Artificial Intelligence, 2009.

Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Administration

Janika Urig
Tel. +49 30 314-73 110
Fax +49 30 314-21 116
Room MAR 5.032

Address

TU Berlin
Fakultät IV, MAR 5-1
Marchstraße 23
10587 Berlin
Germany