direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

In-Hand Manipulation


Unlike most robot grippers, human hands are versatile manipulators: they are soft, compliant, dexterous, and can be used for multiple tasks at once (e.g. lifting a teacup while holding a pencil in the same hand, which requires repositioning of the pencil to free the other fingers for gripping the cup handle).

We want robotic hands to be similarly versatile.  The RBO Hand 3 already solves a large part of this problem by mimicking the morphology of a human hand, but planning movements is still a hard problem. Conventional manipulation planners are designed for rigid hands with links, and they employ analytic models of the hand and a previously known object. Such models cease to be useful in our case, because it is hard to precisely model a system with a soft hand and a complex unknown object.

With these constraints in place, how can our soft robotic hands be made to grasp a pencil and move it between different fingers, or spin a cube to an arbitrary face?

To tackle this problem, we aim to develop controllers that exploit the compliance of the hand in contact scenarios. This requires an understanding of the morphological computation (MC) the hand is performing in manipulation tasks. Given a measure for MC, we want to find control-sequences that exploit the beneficial MC of the hand. By beneficial, we refer to MC that supports/facilitates in-hand manipulation. Bringing together the computation performed by the hand and the computation performed by a controller, we hope to discover "funnels" for in-hand manipulation that represent robust, repeatable and sequencable manipulation skills.

This effort will include investigations of different feature encodings, sample-efficient learning algorithms, appropriate simulation environments and various kinds of hand sensorization.

Contact: Adrian Sieler, Aditya Bhatt



Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2002/1 "Science of Intelligence" - project number 390523135. SoMa - Soft Manipulation, Horizon 2020 project funded by the European Commission. May 2015 - April 2019. Alexander von Humboldt professorship - awarded by the Alexander von Humboldt foundation and funded through the Ministry of Education and Research, BMBF,
July 2009 - June 2015

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe