Inhalt des Dokuments
Es gibt keine deutsche Übersetzung dieser Webseite.
Co-Design of Feedback Control and Soft Morphology for In-Hand Manipulation
[1]
- © SPP2100
Soft material robotics offers important advantages
over traditional, "hard" robotics. The behavior of a
soft robot is not exclusively the result of control commands, as is
the case for hard robots. Instead, behavior is also determined
by the robot's shape and material properties, i.e. the robot's
morphology. As soft robots come into contact with their
environment, they deform, implicitly performing aspects of
control, sensing, and actuation. Clever morphological design
therefore favorably affects the robot's behavior while at the same
time simplifying control and sensing. The benefits of
appropriate morphological design have been demonstrated in many
systems and applications, ranging from swimming robots to flying
robots and from grasping to locomotion.
The
"programming" of soft robots, however, remains largely an
open problem. Whereas for hard robots, programming meant the
specification of actuation commands, in the case of soft robots we
must program control as well as "program" the robot's
morphology to fully leverage the advantages afforded by soft material
robotics. And, of course, these two problems interact very closely. We
therefore speak of a co-design problem: we must determine
control and morphology together to determine the behavior of a system.
Existing solutions to this problem consist of solution instances
designed by intuition and trial-and-error. For soft material robotics
to mature as a field, we must develop an understanding of this novel
design process and derive design guidelines that transfer between
problems.
In this project, we map the design space of
feedback control and morphological design in the context of in-hand
manipulation. Successful in-hand manipulation requires many
contact points between hand and object, leading to significant demands
on control, sensing, and morphology. We will therefore be able
to address many design challenges in a simple experimental setup with
immediate and clear performance feedback. Within the domain of
in-hand manipulation, we will derive an understanding of the co-design
space, we will develop computational tools and hardware components to
support the design process, and we will derive generalizable design
insights that can transfer to other application of soft material
robotics.
Contact persons: Vincent Wall [2], Oliver Brock [3]
lder_Pub/LogoSPP2100.pdf
t_wall/parameter/de/font2/maxhilfe/
_brock/parameter/de/font2/maxhilfe/