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Abstract

Sampling-based algorithms have dramatically improved the state of the art in robotic motion plan-
ning. However, these approaches still make significant assumptions that limit their applicability for
real-world planning. This work describes how one of these assumptions: that the world is perfectly
known, can be removed. We propose a predictive roadmap planner that incorporates uncertainty directly
into the planning process. This enables the planner to identify configuration space paths that minimize
the risk due to uncertainty and, when necessary, directs sensing to reduce uncertainty. Experimental
results in several domains indicate that the predictive roadmap is adept at planning despite uncertainty
in its perception of the workspace.

1 Introduction

In the past decade, sampling-based algorithms [9, 10] have significantly advanced the state of the art in
motion planning. However, these planners make several significant assumptions that limit their applica-
bility to real-world robotic tasks. In particular, these approaches assume that the world is static, that the
path, once computed, is executed perfectly by the physical robot and that the workspace is perfectly known.
Using sampling-based motion planning for real-world robots, such as the autonomous mobile manipulator
shown in Figure 1, requires relaxing these assumptions. Real-world environments often contain dynamically
moving objects, motions of physical robots are subject to execution error and knowledge of the workspace
must be obtained from noisy sensors. In this work we focus on this final assumption. We propose a novel,
predictive roadmap planning algorithm that integrates uncertainty directly into the planning process. This
integration allows the planner to compute paths that minimize risk despite potential errors in the representa-
tion of the workspace.

The integration of uncertainty into the planner also enables it to actively direct sensor refinement. Most
robots possess many different sensors for perceiving the world. Each of these sensors has different accuracy
characteristics and computational costs associated with it. Even within a single sensor modality, different
granularities of perception are possible with associated differences in computational cost. A motion planner
that is aware of the uncertainty in its perception should also be capable of adjusting the granularity of its
perception of different regions of workspace to adapt sensing to the planning task. Large open regions of
the configuration space may permit a significantly coarser granularity of sensing than constricted regions.
The integration of uncertainty and sensing into the planner enables a robot to minimize the sensing required
to successfully motion plan in a given environment.
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Figure 1: A platform for autonomous mobile-manipulation under construction at UMass

This paper proposes an approach to integrating uncertainty and sensing into sampling-based motion
planning based upon the idea of a predictive roadmap. In contrast to a traditional roadmap, the predictive
roadmap does not guarantee that the roadmap graph is unobstructed. Instead, each node and edge in the
graph is labeled with the probability that it is obstructed or free. The predictive roadmap allows cycles in
the roadmap graph. Maintaining redundant paths provides alternatives in the advent that a particular path is
obstructed. Allowing cycles also allows the planner to add new more certain paths between configurations
despite the presence of another path in the roadmap. For any particular path query, the predictive roadmap
is queried using A* [17] to find the path that is most certain. If this search fails to find a satisfactorily certain
path, information obtained in the search can be used to identify areas of the workspace where further sensing
is required.

2 Related Work

Noisy sensing and uncertainty in representation has received significant attention in the field of simultaneous
localization and mapping (SLAM) for mobile robots. Thrun et al. [18] provide an excellent summary of this
work. There has been significantly less work in the field of motion planning for robots with many degrees
of freedom.

Classically, the problem of uncertainty in motion planning was addressed with preimage backchain-
ing [12]. This approach deals with planning given uncertainty in the effects of a motion command.

The first use of a predictive roadmap is Burns and Brock [4]. This work does not address perceptual
uncertainty, but rather used statistical approximate models to predict the state of roadmap edges to improve
the efficiency of the motion planner. FuzzyPRM [14] also explores assigning probabilities to edges in the
roadmap.

The only other work to directly address perceptual uncertainty in sampling-based motion planning is
Missiuro and Roy [13]. This work describes a method for adapting the configuration space sampling distri-
bution based upon the certainty of the sampled configurations. Like predictive roadmaps, paths are found in
the resulting roadmap using A* search and a uncertainty heuristic. This work only addresses simple vertex
based model of uncertainty and planning for simple 2-DOF mobile robot.

Another source of uncertainty in motion planning is the movement of dynamic obstacles. Leven [11]
explores how to improve the efficiency of PRM planning to allow it to operate quickly enough to facilitate
re-planning in the presence of dynamic obstacles. Jaillet [8] introduces cycles in the roadmap graph and
labeling of edges with possible obstructing obstacles in order to allow the planner to reason about which
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paths are feasible given certain moving obstacles. van den Berg [19] also addresses roadmap based planning
in dynamic environments.

Another method for dealing with perceptual uncertainty is augmenting the execution of a motion plan
with online control that is capable of obstacle avoidance. The elastic strip algorithm [3] dynamically mod-
ifies a computed motion plan to avoid dynamic objects. This approach can only generate paths that are
homeotopic with the original path. Alami et al. [16] use anticipation of potential obstacle movement and
local control to adjust the velocity and trajectory of a mobile robot following a specified path.

Yu and Gupta [20] have proposed work that integrates sensing into motion planning. They use an
information theoretic approach that guides a eye-in-hand robot to perform the set of motions that reduce
the entropy in the robot’s perception of its environment. This exploration is focused on understanding the
environment rather than reducing the uncertainty of the motion planning.

Other work is not directly related to uncertainty but has explore concepts that are central to the predictive
roadmap algorithm. LazyPRM [2] delays the evaluation of edges in the roadmap until a path query is
received and uses A* to search for roadmap paths. Others [15, 7] have also explored the use of cycles in
roadmaps for redundant motion planning.

3 Incorporating Uncertainty with Predictive Roadmaps

When sensor data from the real world is used to perceive the workspace, motion planning algorithms must be
aware of the inherent uncertainty in this perception. The process of sensing introduces error into the model
of the workspace. When the motion planning algorithm uses this model to determine if a configuration is
uncertain or free, this error introduces uncertainty into the resulting motion plans and may lead to invalid
paths.

Traditional PRM planning assumes that its perception of the workspace is perfect. When this is not
true, two important things must be considered: First, it is necessary to maintain redundant paths connecting
configurations. This allows for recovery in the advent that a path is found to be obstructed. It also allows
the motion planner to add new paths that are more likely to be free than existing uncertain paths connecting
pairs of configurations. Second, complete examination of the trajectories that connect configurations is no
longer warranted. Edge checking has been found [4] to be the primary computational expensive in PRM
planning. This computational expense is not worthwhile in uncertain environments. Given uncertainty,
exhaustive examination of a trajectory does not provide significantly better guarantees about the state of
an edge compared to less expensive approximations of the edge’s state. These distinctions motivate the
development of the predictive roadmap for motion planning which allows cycles and labels each edge with
the probability that it obstructed or free. Methods for assigning this probability are discussed in Section 4.
For the time being, we will simply assume that each edge has been labeled appropriately.

Construction

In traditional PRM planning, as configuration space is sampled, edges are directly added into the roadmap
graph by modifying the representation of the graph stored in memory. The predictive roadmap is not built
in this way. Instead it is constructed lazily. Pieces of the predictive roadmap are only actually constructed
in response to specific motion planning queries.

Delaying the concrete construction of the roadmap until queried has three significant benefits. First, it
allows the predictive roadmap to maintain redundant paths with no computational cost. Because edges are
not inserted into the roadmap until required, there is no cost associated with allowing redundant edges. Only
when those redundant edges are required by actual path planning are they inserted into the graph. Second,
delayed evaluation of the roadmap ensures that only those parts of the roadmap that are required to satisfy
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a query are actually computed. If a portion of the configuration space is never required to solve a query,
the roadmap associated with that region is never constructed. This adapts computation in a task-specific
manner. Finally, delaying the construction of the roadmap ensures that the most up to date information
about the workspace is used for construction. While waiting for path queries, the robot may be refining its
perception of its workspace. Delaying the evaluation of edges until they are required means that the latest
knowledge is always used.

The predictive roadmap is sampling-strategy agnostic. Numerous sampling strategies for selecting con-
figurations have been proposed [1, 6, 5, 13] including one [13] that directly incorporates uncertainty into the
sampling strategy. Any one of these can be used to select the samples that define a predictive roadmap. For
simplicity we used uniform sampling in our experimental evaluation (Section 5).

Querying

We use the A* [17] algorithm to perform path queries and construct the predictive roadmap. The A* al-
gorithm is a general approach for searching implicitly defined graphs. For a concrete implementation it
requires a cost function, a heuristic function and a method of obtaining the children of a node.

The function for estimating the cost of an edge in the predictive roadmap is:
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obstructed
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is the probability that the edge is obstructed. Methods for estimating this
probability are described in Section 4.

�"�
is a constant that estimates the cost of moving along an edge that

turns out to be obstructed.
�"�

is a constant that ensures that no edge has a cost of zero even if its probability
of obstruction is zero. This plays an important role in balancing A*’s exploration of paths likely to be free
with directed search towards the goal.

For the heuristic function # ��� � � we use the Euclidean distance in the configuration space. All else being
equal, this biases the A* search toward shorter paths through the configuration space.

When A* chooses to expand a node
�
, the set of nearest neighboring configurations $ are found and

returned as possible children of
�
. For each configuration

�&%(' $ , the planner evaluates the probability
that the edge from

�
to
� %

is obstructed. If this probability is greater than a threshold, the
� %

is discarded.
Otherwise, an edge

�)���*�	�+%,�
is added to the predictive roadmap. Both the edges and their probabilities are

cached across multiple instances of A* search in to prevent redundant computation. This method of node
expansion is modeled on the traditional PRM connection step.

When A* search finds a path, its certainty is evaluated. If the minimal certainty that the path is free
exceeds a threshold, it is returned as the result of the query. If this threshold test fails, the planner indicates
that further refinement of the workspace representation is required to compute a path with the requisite
certainty.

Refinement

For a given representation of the workspace, a planner may be unable to find a path whose certainty satisfies
the requirements of the robot’s task. However, in such circumstances, the process of searching indicates
workspace regions that require further sensing to find a satisfactory path. This refinement proceeds as
follows: Each edge in the path whose uncertainty is below some task-dependent certainty threshold indicates
a region of the workspace that requires further exploration. Given these workspace regions, sensing is
initiated by the planning algorithm to reduce their uncertainty. Once sensing is completed, the certainty
of the path is re-evaluated. If the certainty of the path is now great enough, the path is returned as the
result. Otherwise, the uncertain edges are removed from predictive roadmap and to enable the search for an

4



alternate path. This post-process step ensures that sensing fidelity is adapted as required by motion planning
queries. This minimizes the cost of sensing required for successful motion planning.

4 Modeling Uncertainty

The predictive roadmap requires an estimate of the probability that each edge is obstructed. This estimate
is dependent upon the underlying representation of the workspace. Each representation of the workspace
introduces different types of error. Analysis of the source of this error provides a method for reasoning about
the resulting uncertainty. In this work, we consider two different representations: a workspace occupancy
grid and a representation of localized obstacles with known geometry.

4.1 Occupancy Grid Representations

An occupancy grid subdivides the workspace into series of cells. Although some occupancy grids allow
mixed or probabilistic labels for cells, we assume that the grid is binary. Cells are marked as either obstructed
or free. To evaluate the state of a configuration, the workspace location of the robot given the configuration
is computed. If any of the cells that overlap this location are obstructed, the configuration is considered
obstructed. If all of the cells are free, the configuration is free. Error in this representation causes a cell
that is obstructed to be marked as free or vice-versa. In either case, error introduces uncertainty in the state
of roadmap edges. To evaluate this uncertainty we examine the problem as an example of observed data
emitted by some underlying unknowable hidden process. In this context, the examination of an edge results
in a series of observations of whether a particular configuration is obstructed or free. The planner can not
know the true state of each configuration. It must instead obtain information through the fallible workspace
model. This means the planner receives noisy observations of the true state of each configuration. Given
a sequence of noisy observations, the task is to predict the underlying hidden state. There are many well
known methods for solving this problem. We examine two: a naive Bayes model and a hidden Markov
model (HMM) [17]. The following describes the details of these models. Section 5 examines their accuracy.

Naive Bayes

A naive Bayes model derives its name from its assumption that all observations are independent of each
other. For edge checking, this assumption is false, hence the model’s naivete. However, the falsehood of this
assumption does not significantly impact the model’s predictive performance. By assuming each observation
is independent, the probability of a hidden state given a series of observations is simply the product of each
individual probability. For our work, the probability of an obstructed edge is given by:

-.
/10 �

����� / �32�4 �5� obs.
�������6�

obs.
�

798 0 obs.,free
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Applying this model, requires parameter estimates:
���

obs.
�
, the probability that an edge is obstructed,����� / � obs.

4
obs.
�

the probability of an obstructed observation given an obstructed edge and
����� / �

obs.
4
free
�

the probability of an obstructed observation given a free edge. We have found that estimates
of these parameters are generally applicable across similarly structured environments, such as all office
spaces.
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Figure 2: The hidden Markov model used for predicting the state of an edge given a set of observations.

Hidden Markov Models

Hidden Markov models (HMMs) are a graphical model [17]. Unlike naive Bayes models, HMMs do not
assume that each observation is independent. Thus they are a more accurate representation of sequential
observations like the examination of an edge between configurations. We can model the noisy examination
of a sequence of trajectories as the simple HMM shown in Figure 2. There is a vertical slice in the model for
each sequential observation of a configuration along the linear edge. In each slice the hidden node represents
the true, unknowable, state of the configuration. The observed node contains the noisy observation generated
by the planner’s representation of the workspace.

Estimating the obstructed probability of a particular sequence of observations begins by labeling the
observation nodes with the observed values. The Viterbi algorithm [17] is used to calculate the maximum
likelihood sequence of hidden states given the observations. This estimate of the hidden state is used to
predict if the edge is obstructed or free. The likelihood of the sequence of hidden states is used to estimate
the certainty of this prediction.

4.2 Localized Obstacle Representations

An alternative method for representing the workspace is to assume that the geometry of all obstacles in the
workspace is known a priori and that these obstacles can be identified and localized using sensor informa-
tion. We call this a localized obstacle representation. Given this representation, error takes the form of
mispredicting the location of an obstacle rather than mislabeling the state of a cell. By assuming that the
magnitude of this localization error follows a probability distribution, we can calculate the certainty of each
observation of the state of a configuration in the workspace representation.

Gaussian Error Models

In the following, we assume that the magnitude of the localization error follows a Gaussian distribution. We
also assume that localization only introduces translational error in the position of an obstacle. We do not
consider rotational error. Extending this approach to consider rotational error is part of our future plans.

Whether a configuration is obstructed or free the certainty of that observation is related to the magnitude
of localization error that would invalidate the observation.

For obstructed configurations, we estimate this magnitude by calculating the penetration distance in the
positive and negative directions along all three translational axes. This provides two translational magnitudes
in each direction that would invalidate the observation. A simple example of this along one axis is illustrated
in Figure 3. In this example, the localized obstacle (the gray box) in the workspace model indicates that
configuration

�
is obstructed. If the magnitude of error in localization of the obstacle is between = � and =&>

then the true position of the obstacle overlaps
�

and the observation is correct. By assuming the magnitude of
localization error is drawn from a Gaussian distribution, then the probability that the magnitude of error that
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Figure 3: The possible results of localization error. If the localization error for the gray obstacle is between
= �1?*@ =�=&> , then the the configuration q’s state is correctly known.

lies within a range that doesn’t invalidate the observation is given by the cumulative distribution function
(CDF) of the Gaussian function: A

B � erf
� = �CED B �F�HG

A
B � erf

� = >CED B �F�

where erf is the Gauss error function, = � and = > are magnitudes in along the positive and negative
axis respectively. We calculate this probability for each axis. The lowest probability is used as the certainty
estimate. This is only an approximation of the true probability but seems to work reasonably well in practice.
In general, penetration distances are challenging to calculate. Better approximations are possible but incur
significantly greater computational costs.

For free configurations we measure the distance from the robot to the closest obstacle ( =JI ) and use this
value as the magnitude of error required to invalidate the free observation. The probability of this is also
computed using the CDF.

5 Empirical Evaluation

We ran numerous experiments to demonstrate the suitability of the approach described in previous sections.
This evaluation addressed two important questions. First, can the models discussed in Section 4 provide
reasonable values for use in constructing the predictive roadmap? Second, does the predictive roadmap
significantly improve the ability of a motion planner to compute collision-free paths in the presence of
uncertainty?

To answer these questions, we ran the planner in three simulated worlds designed to resemble real-world
environments. Two of these are pictured in Figure 4: a 10-DOF mobile manipulator platform in an office
environment and a 14-DOF humanoid torso in a construction environment. A third world with a 2-DOF
cylindrical robot in the same workspace as the mobile manipulator was also used. We ran experiments
in each of these worlds simulating both methods of representing the workspace. To simulate error in the
occupancy grid representation we used an adjustable probability K err that any particular cell in the grid was
mis-labeled. To simulate error in the localized obstacle representation, we added translational error to each
obstacle’s true position. The magnitude of the error was sampled from a Gaussian distribution and was
different for each obstacle.
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(a) 10-DOF Mobile Manipulator (b) 14-DOF Humanoid Torso

Figure 4: The experimental workspaces and robots used to evaluate the predictive roadmap.

5.1 Modeling

We first examine the models used to assign values to the predictive roadmap.

Occupancy Grid

To evaluate the naive Bayes and hidden Markov models we generated 500 free and 500 obstructed edges in
configuration space. The edges were chosen uniformly at random from the set of edges that were shorter
than the radius used for the nearest neighbor query in motion planning. In this way we believe they are
representative of the edges encountered in motion planning. For each edge, each model was asked to predict
if the edge was obstructed or free. The traditional edge checking model simply returns obstructed if any
configuration along the edge is observed to be obstructed. The fraction of the edges that each model correctly
predicted as a function of the probability of error is shown in Figure 5.

In all three worlds, as error increases traditional edge checking quickly devolves into predicting that all
edges are obstructed. This occurs because the probability of moving along an edge and not receiving an
erroneous observation rapidly becomes quite small. This means that even completely free edges are likely
to result in an obstructed observation. In contrast, both the naive Bayes and hidden Markov models are
significantly more robust to error. Interestingly, HMMs only slightly outperform naive Bayes models in the
environments. From this we conclude that the added accuracy does not justify the increased computational
cost of the HMM and in our planning experiments we chose to use the naive Bayes model for predictions.

Localization

Unlike the occupancy grid model, the model of uncertainty in localization can not be used to provide pre-
dictions about the state of an edge, instead it provides the reliability of the workspace model’s predictions.
This uncertainty is used to bias the posture of the robot toward configurations that are more certain to be
free. An image of this uncertainty function for the 2-DOF cylindrical robot in the office cubicle environment
is shown in Figure 6. In the image, black indicates obstructed with absolute certainty and white indicates
free with absolute certainty. Looking at the image it is easy to see that a planner that selects motions biased
by this uncertainty function will choose configuration-space paths that are more likely to be unobstructed.
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Figure 5: Edge predictions accuracy for HMM, Naive Bayes and traditional edge checking as a function of
error for three different robots with varying degrees of freedom.

Figure 6: A graphical representations of the uncertainty function for the 2-DOF cylindrical robot using a
localized obstacle model of the workspace. Black indicates absolute certainty of obstruction, white indicates
absolute certainty of free space.
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Figure 7: Fraction of paths successfully found by tradition PRM and the predictive roadmap algorithm as a
function of occupancy grid error.

5.2 Planning

In addition to assessing the uncertainty models, we performed experiments to evaluate the use of these
models in predictive roadmap motion planning. To evaluate the planner we generated a series of random
path queries for each environment. We then asked both a traditional implementation of PRM planning and
the predictive roadmap planner to find a path that satisfied the query. We varied the amount of error present
in the workspace representation and observed both the percentage of queries that the planner could solve
correctly and the average runtime that the planner took in computing these solutions. All of the path queries
had solutions given accurate representations of the configuration space. All experiments were implemented
in C++ and were run on a 3Ghz Pentium 4 with 1 GB of RAM running the Linux operating system.

Occupancy Grid

The experiments using an occupancy grid representation introduced error by increasing the probability that
a cell in the grid was mis-labeled. The naive Bayes model was used by the predictive planner to estimate
the state of edges in the predictive roadmap. The fraction of path found and the average runtime for each
planner in each environment as a function of error is shown in Figures 7 and 8.

From these graphs it is easy to see that the because the predictive roadmap algorithm is aware of uncer-
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Figure 8: Runtime required to successfully find a path as a function of occupancy grid error.
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tainty and the possibility of error it is significantly capable of always finding a path as error increases. There
were two causes of failure for the traditional PRM algorithm. First, error in the workspace representation
caused the initial or goal states to be mis-classified as obstructed. Second, we halted the operation of the
traditional PRM algorithm at 30 minutes, path queries that were halted, were considered to have failed. With
sufficient error, we expect that the runtime performance of the predictive approach to degrade to the point
of failure as well.

Interestingly, when there is no error, the excess computation associated with the predictive roadmap
makes its average runtime slower than traditional PRM planning. As error increases, the runtime of tra-
ditional PRM planning increases significantly faster than predictive roadmap planning and even when the
probability of error is only 5%, predictive roadmap planning is more efficient than traditional PRM plan-
ning. In large part this is because error has a similar effect to narrow passages on PRM planning. As error
increases the probability of finding a collision free edge significantly decreases, requiring traditional PRM
planning to perform significantly more exploration.

Localization

Predictive roadmap planning was also used with a localized obstacle model of the workspace. As before,
error was introduced adding Gaussian noise to the true location of each obstacle prior to providing the
workspace representation to the planner. Each planner was then asked to find a path between a random pair
of configurations drawn from opposite sides of the workspace. Once the planner had solved they query,
the correctness of the path was tested against the true state of the workspace. Whether or not the path
computed by the planner was actually collision free was recorded. Experiments were run in each of the
three workspaces for both traditional PRM and predictive roadmap planning. The fraction of paths returned
by each planner that were in fact collision free as a function of error in localization is shown in Figure 9.
The numbers reported are the average over twenty different path queries. In general, these graphs show that
the predictive roadmap planner is more robust to localization error. It maintains near perfect accuracy for
up to twenty centimeters of error. This is a significant amount of error in worlds where the average size of
objects is on the order of a half a meter. Because the humanoid torso is fixed to the ground, it is significantly
more susceptible to error in localization. While the predictive roadmap outperforms traditional PRM, the
performance of both decays rapidly. In general, once performance begins to degrade, both planners show
linear decreases in reliability as error increases.

Unlike planning with the occupancy grid representation, the runtime of the planner did not vary signif-
icantly as error increased. For the two more complex workspaces the predictive roadmap planner is nearly
an order of magnitude slower than traditional PRM planning. This is largely due to the repeated nearest ob-
stacle and distance queries incurred in evaluating the certainty of each edge. We are investigating methods
of speeding this computation.

5.3 Refinement

The final aspect of the predictive roadmap planning is the incorporation of sensory refinement into the
planner. To demonstrate this, we ran experiments in each world using a certainty threshold. Whenever the
certainty of an edge in this path was below this threshold, the planner made a request to refine the sensing
associated with that edge. Perfect information about the edge was then obtained. For the same planning
experiments described previously, the fraction of edges that required refinement was recorded. This is
given as a function of error for the occupancy grid and localization workspace representations in Figure 10.
In these graphs it is clear that refinement required is a function of error. However, in many cases, the
refinement is extremely minimal. An exception to this is the torso world in using localization. In this world,
the proximity of the torso’s base (which can not move) to the obstacle made every prediction uncertain. This
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Figure 9: Fraction of correct paths found by each planning algorithm as a function of localization error
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Figure 10: Sensor refinement required to reduce uncertainty as a function of error

points to the need to refine the certainty metric to only consider certain parts of the robot, such as the arms
in the case of the torso. Generally, the refinement experiments show that adapting the sensing granularity
at the direction of the predictive roadmap planner can significantly reduce the sensing required for motion
planning.

6 Conclusions

Sampling-based algorithms have significantly advanced the state of the art in motion planning. However,
these approaches still make significant assumptions that prevent the application of these methods to real-
world robotics. In the preceding we have proposed an approach for eliminating one of these assumptions,
in particular, the assumption that the state of the workspace is perfectly known. When real-world sensors
are used to perceive the workspace, sensor error introduces uncertainty into this perception. The predictive
roadmap method for motion planning directly incorporates the uncertainty into the roadmap by labeling each
edge with its probable, rather than absolute, state. This allows the planner to reason about uncertainty and
select paths that minimize the risk due to sensor error. Incorporating uncertainty into the planning algorithm
also allows the planner to suggest additional areas of the workspace where further sensing is needed to
enable the computation of successful plans. We have described several models for estimating the state of
an edge for two different methods of representing the workspace. Empirical experiments demonstrate that
these models successfully capture the state of the world, even in the presence of error. Finally, planning
experiments show that the predictive roadmap approach is significantly more robust. It can correctly solve
path queries even in the presence of significant error.
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