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Abstract

Motion planning for robots with many degrees of freedom iexputhe exploration of an exponen-
tially large configuration space. Single-query motion planrs restrict exploration to regions of configu-
ration space determined to be relevant to a particular pdgrquery. The heuristics employed by existing
single-query planners to estimate the relevance of a repmmever, remain unchanged throughout the
planning process. An incorrect estimate by the heuristi@afoonfiguration space region will only be
corrected by explicit exploration. As a result, unnecassaploration is performed. In this paper we
propose an alternative approach. We observe that evemmartal sample improves the planner’s un-
derstanding of configuration space. This improved undedstg can be exploited to inform the single-
query heuristic of a motion planner. We formalize the imgmment in understanding by employing the
notion of entropy from information theory and derive a pijithed method of configuration space ex-
ploration in the single-query setting. Experiments shoat the proposed single-query entropy-guided
motion planner outperforms existing single-query techag

1 Introduction

The general motion planning problem has been shown to be €5RAmMplete [5, 13]. In spite of this
computational complexity, sampling-based motion plasrege able to solve many practical problems in
high-dimensional configuration spaces [9]. But even thézengrs cannot avoid the exploration of a con-
figuration space of exponential size. During exploratiomaalel of free configuration space is constructed.
In sampling-based motion planners this model is a grapleccabadmap, that captures free space connec-
tivity. Once such a roadmap has been computed for the emtirigeiration space, any planning query can
be answered efficiently.

To answer only a single motion planning query, the complgptogation of configuration space is not
necessary. It suffices to build a model of free configuratfwacs in regions relevant to the given query. This
provides the motivation for single-query motion plannérkese planners construct a partial model of free
configuration space by biasing exploration toward regi@tsminined to be relevant to the query. A number
of such single-query planners have been proposed in thatlite. They differ in their method of estimating
the relevance of a particular region of configuration spaee Section 2).

A common feature of all heuristics for single-query motidarmers presented in the literature is that
they ignore the information obtained during the planningcpss. The estimated relevance of a region



provided by these heuristics is only altered by its expksidmination. This is because existing heuristics
estimate relevance of regions assuming they are free. btimxiplanners, this assumption can only be
disproven by explicitly invoking a collision checker. Iratiy, the information captured by nearby samples
taken during the motion planning process provides an itidicaf whether a particular region is free or not.
This information currently is ignored by existing planners

We present a single-query motion planner that estimatestilitg of configuration space regions based
on their relevance to a particular planning quaing the probability that they are collision free. Both factors
are determined based on information obtained incremgritalbughout the planning process. Extending
our previous work on entropy-guided motion planning [4], @loit the notion of entropy reduction to
derive an information theoretic heuristic for single-querotion planning. We first define a probability dis-
tribution over paths in the configuration space. This distibn is designed to have high entropy when little
information about the single-query is available and mimmentropy when a solution has been determined.
Configuration space exploration is guided by the heuridtimaximum entropy reduction, or equivalently,
maximum information gain. This heuristic uses all avaiainformation to guide the planner’s exploration.
Each exploration step results in maximal progress towasdogiering a solution path, given the available
information at the time.

Empirical evidence shows that the proposed single-quetmpmyrguided motion planner outperforms
other approaches to sampling-based single-query motampig.

2 Related Work

The first probabilistic approach to single-query path plagrnwas the LazyPRM algorithm [2]. LazyPRM
initially samples the configuration space without perfarghicollision checks. Samples are assumed to
be free and are connected to their nearest neighbors by adtperit verifying their validity. LazyPRM
searches the resulting roadmap using the A* algorithm, lwbiases search toward the region of space
surrounding a straight line path between the start and datd.sThis heuristic remains unchanged, irre-
spective of acquired information indicating, for exampleat a region is obstructed. When a candidate
path in the roadmap is found, it is validated by testing alesand then all edges. If obstructed nodes or
edges are found, they are removed from the graph and A* pattclséegins again. A multi-grid variant
of LazyPRM [1] discretizes the range of motion for each degyefreedom to simplify the configuration
space. The granularity of the discretization is adapted tinet motion planner can find a path.

FuzzyPRM [12], unlike LazyPRM, does not delay the examaratf nodes in its graph, but does delay
evaluation of edges. FuzzyPRM maintains an estimated pilithavalue for each edge based on a dis-
tribution over the unchecked portion of the path. For a paldir edge segment, this estimate exclusively
depends on the length of the edge. Consequently, is remaiirstant throughout the planning process and
is not updated based on information obtained by samplingdi@date paths through configuration space are
found using Dijkstra’s algorithm. When a path is found, iv&ified by examining edges in the order from
longest (judged by FuzzyPRM to be least likely to be free difsion) to shortest.

Similar to the multi-grid extensions of LazyPRM is the sigjuery quasi-random grid approach (LazyQRM) [8].
Quasi-random grids establish a lattice of configuratioremg the configuration space. Since the struc-
ture of the grid is implicitly defined, the costly pre-sanmgliand graph construction required by LazyPRM
and FuzzyPRM can be avoided. The A* algorithm, using Eueliddistance to the goal as its heuristic, is
used for search within the grid. This heuristic is identicethe one employed by LazyPRM.

An adaptive approach to single-query path planning is prtesein [15]. It features a meta-planner that
incrementally plans between start and goal. At each plgnaitempt, the “best” algorithm, based upon the



number of obstructed configurations and the algorithm’siptes performance, is selected. When planning
fails, any progress made by the planner is grafted onto #ré abhd goal tree. This single-query motion
planning techniques effectively combines a variety of p&s with the goal of exploiting their strengths
and weaknesses in configuration space regions with spekéiacteristics.

Rapidly-growing random trees (RRTSs) [7] quickly explore #irea between start and goal configurations
by diffusing random trees of short edges through configomagpace. The employed heuristic is termed the
Voronoi bias [10]; it guides sampling toward unexploredioeg of configuration space. Again, this planner
does not take into account information obtained during faamng process to alter this heuristic, i.e., the
heuristic does not differentiate between different opgmores based on whether access to them is blocked
or not. Single-query planning with expansive spaces [6inslar to RRT planners; they also use diffusion
from start and goal configurations to find a solution to thepiag problem.

Others have suggested the use of information theory foramgtlanning. Yu and Gupta [16] use re-
duction in entropy to guide the visual exploration of workse for an eye-in-hand system. The notion of
entropy is used to determine placements for the cameranthaixpected to provide maximum information
about the workspace. By iterating the process of placingdneera based on this criteria, visual exploration
can proceed efficiently. In our previous work, the notiongwoifropy has been used to successfully guide
sampling in the construction of multi-query probabilisttadmaps [3].

3 Single-Query Entropy-Guided
Motion Planning

We propose a novel single-query motion planning approaskdan an information theoretic framework.
The configuration space exploration performed by this pars influenced by) the relevance of a con-
figuration space region for finding a solution to the givemplag problem, andb) the probability that this
region is free of collision and thus can be part of a potestdiition.

The relevance of a region is estimated based on whether a potential solution path traverses it.
A potential solution path is a path that, given the currefdrimation about the configuration space, is not
known to be obstructed. The path is found based on the cugpregsentation of configuration space. Since
this representation is updated with each sample, all irdtion available at a particular point in time is taken
into account. This is an important distinction to previoimgke-query motion planners.

In addition to the binary criterion for potential solutioatps (a path can either be shown to be invalid,
or is assumed to be valid), we propose to estimate the pidigadfia particular solution path to be valid
based on the information available in the configuration spapresentation. This information can be used
to guide configuration space exploration toward regionstrikaly to contain a solution to the planning
problem.

These two criteria are used in an information theoretic @gbion scheme based on entropy reduction
(or information gain). The derivation of information gam this setting will be given in Section 3.1. In
Section 3.3 we show how information gain can be used to guigéomation of configuration space in a
concrete implementation.

3.1 Information Gain in Single-Query Motion Planning

In this section we discuss the information theoretic baglgd for the single-query motion planning method
presented here. Information gain [14] is a formal represgent of the reduction in uncertainty that results
from some additional knowledge. It was originally proposaébrmally model information transfer through



electronic signals. In the case of sampling-based motianmphg, additional knowledge is the observation
that a configuration is obstructed or free. In prior work, vefired information gain for multi-query motion
planning [3]. For single-query motion planning we must defaxpected information gain for the task of
discovering a particular path.

Entropy is the measure of uncertainty of a probability distion P over a domainD:

— > P(d)log P(d
deD

Information gain is the reduction in the entropy of a disttibn as a result of obtaining some information
IG(Dli) = H(D) — H(D|i)

A distribution that has low entropy when a path between siagitgoal has been found and high entropy
otherwise allows information gain to be used to direct esgilon. At each step, the motion planner operates
to maximize information gain (and thus minimize entropy}ho$ distribution. Because of the design of the
distribution, this results in maximal progress toward aigoh to the specified path query.

For single-query motion planning we use a distribution aveet of possible path4é. Each member of
this seta € A represents a path connecting the start and goal configasatibhe probability assigned to
each pathu in this distribution is the probability that it will be the stessful path returned by the motion
planner. This probability is the combination of the prottibthat the path is freeR; (a)) and the probability
that this path will be examined by the motion planner prioaty other path which is free(a)). Since
these probabilities are independent, the joint probalittiait the path is free and examined prior to any other
free path is given by, (a) = Ps(a) - Pf(a). The probability,P;(a) is difficult to calculate exactly but it is
proportional to the length of the path since the planner Ageshich searches for shortest paths.

P;(a) can be calculated as the product of the probability thatébisstituent vertice$’(a) and edges

E(a) are free:
a)=(HPf )(pr>
vEV (a) ecE(a)

Edge and vertex probabilities are either the result of tdibservation in the collision checker or estimated
by the approximate model (Section 3.2). The entropy of thaitution is given by:

— > PBy(a)log Pyla)

acA

Every exploration of configuration space results in obtajrnof some new information which pertains to
the feasibility of the patla.

For each patla in A, there are two possible outcomes of learning may be more likely to be free, or
a may now be known to be obstructed. In each case, the infasmggin is given by the difference between
the prior and current entropy. Most of the probabilitiestfer paths of the distribution will remain the same,
only those paths that contain a vertex or edge relatéavibh be affected. Letd’ be this set of all paths id
that contain paths affected by

First, consider the case wheteesults from an observation that something is free. In thisecthe
probability of each path thatpertains to increases slightly:

IG(D|i) = H(D) — H(D|i)



= —ZP )log Ppy(a ZP (ali)log Py(ali)
ac A’ acA’

When: results from an obstructed observation patke A’ that: pertains to, the probability of the path
becomes zero. The information gained is:

G(D|i) = H(D) — H(Dli)

= —ZP )log Ppy(a ZP (ali)log Py(ali)
acA’ acA’

= =) Py(a)log Py(a)
acA’

Expected information gain is given by:

<IG(D|i)> = =Y Py(a)logPy(a) +
acA’
P(i = free) > Py(ali)log Py(ali)
acA’

Observing thatog P,(ali) < 0 and thatP,(a|i) > 0 for any patha, we can see that for information
pertaining to a set of pathd’, the information gain from discovering an obstruction isajer than or
equal to information gain for observing free space. Inialti this can be seen by noting that observing a
configuration is obstructed immediately eliminates therergath, while observing a configuration is free
only increases the probability the path is free.

In the following section we use this information theoreti@lysis of single-query motion planning to
develop a single-query entropy-guided motion planner.

3.2 Modeling Configuration Space

The derived formulation of information gain for single-gquemotion planning requires an estimate of the
probability that previously unexplored configurations autbes are collision-free. We propose to use
memory-based models from the machine learning literatit¢ o provide such an estimate. Memory-
based models are based on a collection of samples, muclhdéikeaditional roadmap in PRM planners. The
particular model used in this paper estimates the statewialmserved configuration by examining the set of
nearby neighbors in the model. The majority state of thelmeaeighbors determines the prediction about
the unobserved query configuration is made. We have showwleése [4], that memory-based models can
build successful approximations of configuration space.

In addition to estimating the state of unexplored configaraspace regions, memory-based models
have a number of appealing characteristics for our purpdsest, adding data to the model takes constant
time regardless of the size of the model. Second, querymgibdel is linear in the number of configurations
used to construct it. Third and maybe most importantly, tlelehallows the incorporation of positive and
negative samples. In traditional roadmaps, colliding dampre discarded, although they provide useful
information about the state of the configuration space.



3.3 A Single-Query Entropy-Guided Motion Planner

We now present a single-query entropy-guided motion plabased on the formal definition of information
gain presented in Section 3.1 and the configuration spacelmudduced in Section 3.2. To render this
implementation practical, we have to discretize the sell giogsible paths considered in the original deriva-
tion of information gain. This is accomplished using a roagmas in traditional sampling-based motion
planners. The probability of a particular sample is free lmampproximated using a memory-based model
in addition to this roadmap. Since both the roadmap and thmangebased model are based on samples, no
additional configuration space exploration is requirednfi@aintaining the memory-based model.

At the initial stage of motion planning, the single-queryrepy-guided motion planner chooses a set of
samples from which an initial roadmap and memory-based hudd®nfiguration space are constructed. A
fraction of the samples are chosen uniformly at random,emi& majority are chosen from the bounding
box surrounding the start and goal configurations (reflgdfive heuristic used in LazyPRM). To build the
model, all sampled configurations are inspected by thesamtlichecker to determine if they are free or
obstructed. The initial roadmap is constructed from coméians which are found to be free, but with-
out verifying the connecting edges. This is one importafiedince between the entropy-guided approach
and LazyPRM [2]. The latter constructs an initial roadmaghait examining any configurations. An-
other important distinction is that while LazyPRM samplesi€densely and uses short edges to connect
configurations, we sample sparsely and connect using lauggs.

Once the initial roadmap has been constructed, A* is usedtbdicandidate path between start and
goal configurations. The choice of A* to search the roadmapthe particular cost metric used for edges,
are derived from the information theoretic considerationSection 3.1.

In contrast to previous uses of A* for path planning [1, 2,l&ttuse edge length for edge cost, the cost
used by entropy-guided planning is the product of edge keagtl the probability the edge is obstructed:
mboxCost(e) = k - Lengthle) - Pr(e). The probability that an edge is obstructed is estimatedgussie
memory-based model. This cost is designed to favor edgearidikely to be free £;(e)), while simulta-
neously maximizing exploration (Leng#)). The constank is used to balance this trade-off.

This cost function in combination with the A* algorithm regent a practical way of maximizing;(a)
and Py(a), which in turn maximizes the information gain?(a) is maximized because short paths are
favored by the A* search, an;(a) is maximized because paths which are likely to be free areréal
Note that the estimate @?(a) provided by the memory-based model is updated as confignragiace ex-
ploration proceeds and observes the state of additiondiigcwations. In addition, as edges are invalidated,
they are removed from the roadmap. Both these factors ati@nheuristic used to guide exploration to
effectively incorporate the information obtained abow tlonfiguration space during the process of motion
planning.

Once a candidate path is found, the algorithm begins by esiagieach of its vertices. The expected
information gain from examining a vertex is greater thang®amining an edge since the set of pattis
affected by gaining information about a vertex is greatanttie set of paths affected by gaining information
about an edge. Because observing an obstructed vertexdpsomiore information than observing a free
vertex (see Section 3.1), the vertices are examined in @dsording to their probability of obstruction.

If any vertex is obstructed, examination of the candidaté gtops and search for a new candidate path
resumes.

Once all vertices in the candidate path are verified, thesdfjhe candidate path are examined. Again
the edges are examined in order by their probability of cictin. If an edge is found to be obstructed it
is removed and search for a new candidate path resumes.eligdls are found to be free, the path is the
solution.



Figure 1: The initial (transparent) and final (solid) confafion of a twelve degree of freedom arm in the
experimental environment.

If a candidate path between start and goal cannot be fourfteinoadmap, it is necessary to enhance
the roadmap to introduce new candidate paths. The resagmnied in our planner is similar to that of
LazyPRM. We resample configurations that are near to olisttugxges that connect valid configurations
in the roadmap. Unlike LazyPRM, we filter the configuratiohattwe resample through the approximate
model of configuration space. If a resampled configuratidikédy to be obstructed, we do not attempt to
add it into the roadmap. The planner learns from experiendeagoids resampling the same invalid regions
of configuration space. Once resampling is performed, taechdor a candidate path continues using the
augmented roadmap.

4 Experiments

To validate the entropy-guided approach to single-quersianglanning we perform experiments with an
implementation of the single-query entropy-guided plardescribed in section 3.3). The performance of
the proposed planner is compared to the performance ofitnadi LazyPRM [1] and a single-query quasi-
random planner (LazyQRM) [8]. Initial parameters for these algorithms are set based upon descriptions
in the respective papers.

To compare the algorithms we measure the number indivicalls t the collision checker, the number
of calls to validate an edge and the total overall time to finghth. For the entropy-guided planner, the
number of collision checks used to construct the initiadroap and model is included in the total number
of collision checks.

Experiments were run for an arm with six, nine, and twelvereeg of freedom. The twelve degree of
freedom arm is shown in Figure 1. The six (nine, twelve) degrefreedom arm consist of three (three,
four) links connected by joints with two (three, three) degg of freedom. The workspace for all of the
arms is the same and is shown in Figure 1. Each algorithm emgirhes with ten different path queries.
Each path query consisted of a random starting locationarvitinity of the straight configuration shown
in Figure 1 and a goal configuration with the end effectordaghe constrained location in workspace (also
pictured in Figure 1).

The results of the experiments are shown in Figure 2. It casdes that the single-query entropy-
guided planner outperforms the other two planners. The Q& planner fails to complete for either the
nine or twelve degree-of-freedom robot. It consumes allabie memory and exits on a Pentium 4, 3.2Ghz



Algorithm Success Collision | Edge | Runtime
Checks | Checks
Entropy Guided 12% 1385.6 26.1 3.7
LazyPRM 50% 1575.5 | 19.25 5.0
LazyQRM 0% N/A N/A N/A

Table 1: Percentage of successful motion plans for the 1E-EDot

with 1 gigabyte of RAM. This is indicative of the fact that LagRM'’s grid grows exponentially in the
dimensionality of the configuration space.

It is important to note that in the twelve degree of freedomlevoeither the LazyPRM nor the entropy-
guided approach could reliably find a path. The LazyPRM ptarsuccessfully found a path 50% of the
time and the entropy-guided planner found a path 75% of the.tiThese results are summarized in Table
1. When LazyPRM is successful, it is because it has sele@séficial placements for its initial roadmap.
Entropy-Guided motion planning is less reliant on recajvéngood initial roadmap and can find solutions
more often. The data given for LazyPRM is the averaged oVveuatessful planning attempts. The execu-
tion time given for entropy-guided planning is the averagmtof the same number of experiments as for the
LazyPRM,; the slowest experiments were discarded, as they swtion planning problems that LazyPRM
was unable to solve.

For the purposes of practical motion planning we apply a tioteoff to each algorithm. Any path plan-
ning attempt that lasted longer than thirty seconds is talted path planning restarts from the beginning.
The collision and edge checks as well as the runtime are @lnaglated until a successful motion plan can
be determined. The graphs in Figure 2 indicate that the pyvgoaided approach leads to better runtime for
all three problems. The greater number of collision cheolsx and nine degrees of freedom are from the
checks used to build the initial roadmap and model. This teoiost becomes insignificant for motion
planning in higher dimensions, as seen with the twelve degfdreedom arm. It is important to note that
individual collision checks require an order of magnitudssl computation than edge checks, so the slight
difference in the number of collision checks has much lesmagffect on runtime than the number of edge
checks. Additionally, single-query entropy-guided motmanning is biased toward checking edges which
are likely to be obstructed, while LazyPRM is biased towaldes likely to be free. Obstructed edges are
generally less computationally difficult to check than feglges, resulting in further performance gains.

5 Conclusions

We present a novel single-query motion planner based onfammiation theoretic framewaork. Information
theory provides a principled way of guiding configuratioraep exploration to maximize progress toward
the computation of a solution to the given planning probld@inis is accomplished by designing a practical
planner capable of sampling those regions of configuraj@ee that provide maximum expected informa-
tion gain—or maximum expected entropy reduction—at eash gt the planning process. Empirical results
show that the proposed single-query entropy-guided mgti@mner outperforms other single-query motion
planners presented in the literature.

The performance improvements realized by the proposedaetazan be attributed to two factors. First,
at every point during the planning process, the informatibtained by previously placed samples is used
to guide the process of future exploration. In contraststeng single-query methods rely on a heuristic
that does not take into account this information. Secorelptbposed method reasons about the probability
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Figure 2: Experimental results for motion planning in 6, 8 42 degree configuration spaces

of potential solution paths based on all available infoforagbout configuration space. Previous planners
estimate this probability without considering all aval@alinformation. These factors are captured in an
information theoretic framework that allows the proposdahping method to make maximum progress
toward finding a solution, given the available informatidroat configuration space.

We have also demonstrated the use of incrementally consttbumemory-based models in motion plan-
ning. These models augment the prevalent roadmaps anddprestimates of the state of configurations
that have not been observed, based upon known nearby safipésare also capable of using information
from colliding samples, which are discarded by other samgpliased motion planning techniques. In the
proposed planner these models are used to estimate theépitghat potential solution paths to be free of
collision.
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