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The structure of active opsin as a basis for identification of GPCR agonists
by dynamic homology modelling and virtual screening assays
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Most of the currently available G protein-coupled receptor (GPCR) crystal structures represent an
inactive receptor state, which has been considered to be suitable only for the discovery of
antagonists and inverse agonists in structure-based computational ligand screening. Using the b2-
adrenergic receptor (B2AR) as a model system, we show that a dynamic homology model based
on an ‘‘active’’ opsin structure without further incorporation of experimental data performs better
than the crystal structure of the inactive B2AR in finding agonists over antagonists/inverse agonists.
Such ‘‘active-like state’’ dynamic homology models can therefore be used to selectively identify
GPCR agonists in in silico ligand libraries.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

G-protein coupled receptors (GPCRs), a versatile superfamily of
transmembrane proteins, play a major role in signal transduction
and are activated by a diverse set of signals, including small mole-
cules, peptides and light [1]. Around 45% of all drugs on the market
modulate the activity of GPCRs [2]. Despite their pharmaceutical
importance, only seven GPCRs are available as crystal structures
up to now [3–8]. To overcome the lack in structural information
on other GPCRs for virtual ligand screening, homology modelling
is usually applied [9,10]. From their pharmacological effects, GPCR
targeting ligands can be generally divided into agonists, antago-
nists and inverse agonists [11]. An early discrimination of the
investigated ligands into these categories in silico is of high impor-
tance for pharmaceutical research. Most GPCR crystal structures
represent an inactive state which has been considered to be
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capable for the discovery of antagonists and inverse agonists only
[12–14]. To date, only the structure of opsin [15] and most recently
structural models of active conformations of the b2-adrenergic
receptor (B2AR) [16–18], the agonist-bound b1-adrenergic receptor
[19] and a constitutively active rhodopsin [20] could be potentially
used as a template for the modelling of active GPCRs and subse-
quent virtual screening for agonists. In this work, we want to test
how far this ‘‘active state’’ structural information can be exploited
to discover the structures of agonists in preference over antago-
nists/inverse agonists with B2AR as a model system.

We used the opsin crystal structure as a template to model an
activated state of the b2-adrenergic receptor, which is well charac-
terized by many biochemical studies [21]. A similar approach was
used recently by Simpson et al. [22]. In contrast to their study, we
do explicitly not include additional experimental data on the
receptor of interest to verify the general applicability of our
approach. Furthermore, our modelling procedure takes the dynam-
ics of receptor and ligand into account, without constraints on the
helical backbone, but within a native membrane model. The model
was constructed by dynamic homology modelling [9]. We mod-
elled the activated state in its apo form and in complex with an
agonist (epinephrine) and an inverse agonist (carazolol). For com-
parison, we also introduced those ligands into the inactive state
crystal structure of B2AR (PDB ID 2RH1) [5]. Dynamics of the pro-
tein/ligand complexes were investigated by free MD simulations in
lsevier B.V. All rights reserved.
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an explicit membrane/solvent environment. Representative
binding modes that exhibit the major protein/ligand contacts are
extracted by hierarchical clustering of interaction fingerprints
(IFPs) [23] of MD snapshots. The model of the activated state was
evaluated in virtual screening experiments, using the representa-
tive binding mode of the activated state as a reference to rescore
the virtual screening results by IFPs.

2. Materials and methods

Model construction and MD simulations, the application of
interaction fingerprints in MD simulations, the preparation of
ligand database and the virtual screening protocol and analysis
are described in detail in the Supplementary data available online.

3. Results and discussion

3.1. Stability of the active-state receptor model

Fig. 1 shows the root mean square displacement of the Ca
atoms of the 7TM domain (Ca-RMSD) from the initial structure
of both models during 70 ns of MD simulation. The apo form of
the inactive model (B2AR) deviates the most from its starting
structure (Fig. 1A). Both kinds of ligands stabilize the receptor to
the same extends. This finding supports the idea that the crystal
structure 2RH1 represents a partially activated state of the recep-
tor [24]. Fig. 1 B shows the RMSD from the starting structure for
the model of the activated receptor (B2AR⁄). Clearly, the apo form
of the receptor diverges most from the initial structure during the
simulation. The epinephrine bound model stays closer to the
Fig. 1. Ca-RMSD comparison of the 7TM domain of B2AR and B2AR⁄ (apo form,
epinephrine bound and carazolol bound, respectively) to their initial structures
during 70 ns MD simulation. (A) Ca-RMSD of B2AR during the simulation. The
RMSD of B2AR-apo (gray) reaches a maximum of 2.2 Å after 20 ns. The RMSD of
B2AR-epinephrine (red) fluctuates between 1.8 and 2.0 Å. The RMSD of B2AR-
carazolol (blue) rises to a maximum of 2.0 Å during the simulation. Both kinds of
ligands stabilize the receptor to the same extend. (B) Ca-RMSD of the B2AR⁄

structures during the simulation. The RMSD of B2AR⁄-apo (cyan) remains between
3.1 and 3.2 Å after 50 ns. The RMSD of B2AR⁄-epinephrine (red) rises to 2.2 Å after
the first 6 ns. B2AR⁄-carazolol (blue) attains a RMSD of 2.8 Å after the first 35 ns.
The model structures of the activated receptor are stable during the MD simula-
tions. Epinephrine stabilizes the B2AR⁄ structure better than carazolol.
starting structure than does the carazolol bound model. Kobilka
and Deupi [25] proposed that agonists stabilize the activated
receptor and hence shift the equilibrium of activated and inacti-
vated states toward the active conformation. Our finding agrees
well with this hypothesis.

We also compared our model with the recently published struc-
tures of an active state of B2AR [16,18]. We find that the 7TM
domain is in good agreement with the crystal structures (Fig. S1).
During the last 5 ns of simulation, the average Ca-RMSD between
the model and both structures is 2.2 Å. While helix I to IV are in
excellent agreement (RMSD about 1 Å), helices V to VII deviate
up to 3.0 Å from their position in the active state crystal structure.
The outward movement of the intracellular side of helix VI, defined
by the opsin structure, is less pronounced in the model than in the
active B2AR crystal structures, indicating that the opsin structure
might not resemble a fully activated GPCR state [15], or that the
extend of this movement during activation is different between
the two receptors.

3.2. Dynamic ligand binding

To analyse ligand binding in detail, we looked closer at the
dynamics of ligand binding and extracted information on the
dynamics of binding modes, which can be used to characterize the
major molecular features of the receptor–ligand interactions. As
the formation of an active GPCR state involve conformational
changes in the ligand binding pocket [16], agonists and antago-
nists/inverse agonists will have different contacts with the binding
pocket, as they are thought to stabilize active and inactive conforma-
tions, respectively. We here monitor dynamic ligand binding by
interaction fingerprints (IFP) [23,26,27], which are a binary pattern
of protein/ligand contacts. They can also readily be used to monitor
ligand interactions with the receptor during MD simulations. IFPs,
which map the protein/ligand interactions, are therefore a suitable
tool to discriminate between the interaction pattern of ligands in
an inactive and an active receptor, and thus between agonists and
antagonists as well. We extracted a snapshot from the MD trajectory
each 5 ps and computed the IFP from the structure. Each IFP is a bit
string that consists of 7 interaction types per residue in the binding
pocket.: Hydrophobic interactions, aromatic face-to-edge, aromatic
face-to-face, H-Bond donor, H-Bond acceptor, ionic bond to nega-
tively charged residue and ionic bond to positively charged residue.
A bit is set to 1 if the respective interaction is observed between the
ligand and the receptor in a snapshot. The resulting IFPs were clus-
tered by hierarchical clustering. From the resulting clusters, we se-
lected the most populated cluster (present in >65% of simulated
time). A representative IFP for this cluster was constructed by setting
each bit to 1 if its interactions were present in at least 50% of the IFPs
in that particular cluster (see Supplementary data for details). These
representative IFPs are later used as ‘‘reference IFPs‘‘ for scoring of
the VLS results. This approach provides a straightforward and sys-
tematic method to extract major binding features from the MD
trajectory.

Fig. 2 shows representatives of the dynamic binding modes of
carazolol and epinephrine obtained from simulations of the inac-
tive and active receptor. Each image of the two ligands shows a
snapshot from the MD trajectories, whose ligand–receptor interac-
tions match their representative IFP to a maximal extend. Although
representing an average binding mode by construction, and the ex-
act binding contacts of the representative IFP do not necessarily
need to be actually present all at once in the MD trajectory, this
is the case for the structures presented here.

A thorough discussion of the respective binding modes can be
found in the Supplementary data section. In general, epinephrine
is more mobile than carazolol within both receptor models, most
probably because of the smaller size of its aromatic ring. It probes



Fig. 2. Representative binding modes of carazolol (inverse agonist) and epinephrine (agonist) after 20 ns MD simulation. (A, B) Inactive receptor model B2AR (based on
2RH1). (C, D) active receptor model B2AR⁄. (A) Carazolol is overall employing the same binding mode as in the crystal structure 2RH1. (B) The para-hydroxyl group of
epinephrine is hydrogen bonding to 203 and is accepting a hydrogen bond from Ser207. The meta-hydroxyl group is hydrogen bonding to Ser204 and Asn293 over a water
mediated hydrogen bond. (C) Carazolol is shifting along helix V towards the extracellular side in B2AR⁄. The cabazole nitrogen atom is hydrogen bonding Tyr199. (D) Binding
mode of epinephrine in B2AR⁄. Ser207 hydrogen bonds the para-hydroxyl group, which also acts as a donor to Asn293. Asn293 is also hydrogen bonding the meta-hydroxyl
group. The clamp-like connection of the ethanolammonium group and Asp113 is a consistent feature of all ligand–receptor pairs.
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different locations in the binding pocket (compare Fig. 2 and S2),
which results in a less frequent observation of certain contacts.
This observation is in good agreement with the lower binding
energy of epinephrine compared to carazolol, resulting in a much
lower experimentally determined affinity of epinephrine com-
pared to carazolol (lM vs. pM range) [5,28]. The receptor/ligand
contacts of the inactive receptor agree well with experimental data
and earlier MD studies [4,29–31].

Fig. 2C and D show the dynamic binding modes of carazolol and
epinephrine in B2AR⁄, respectively. In B2AR⁄, carazolol is much
more mobile than in B2AR and loses many binding features that
are present in the ground state structure of B2AR (2RH1) [5]. We
assume that this binding mode is an artificial state, containing an
inverse agonist in an active-like receptor state. Epinephrine’s
dynamic binding mode in B2AR⁄ agrees well with experimental
and theoretical data available [16,28,30,32,33]. Summing up, the
dynamic binding modes of both ligands in both models thus are
in good agreement with data from earlier MD and experimental
investigations. Our in silico dynamic homology modelling strategy
will therefore most likely result in protein/ligand interactions,
which are comparable to the ones in vitro/in vivo. We can use
the simulations of epinephrine and carazolol to determine refer-
ence IFPs for agonists and antagonists/inverse agonists, and apply
them to rescore docking positions of other ligands to discriminate
them into agonists and antagonists/inverse agonists. The good
agreement with experimental data suggests that our approach
might be suitable to investigate the binding modes of ligands of
other GPCRs as active state dynamic homology models, which
are less studied than B2AR, as well.

3.3. Virtual ligand screening verifies activated receptor model

To verify whether the active structure model is capable to har-
bour other agonists, we challenged it in a virtual ligand screening
(VLS) experiment. We tested its ability to retrieve experimentally
known agonists and to discriminate them from antagonists and
inverse agonists.

For this purpose, we compiled a test set of known B2AR ligands,
containing 20 antagonists/inverse agonists and 20 agonists, and
960 randomly chosen decoy structures. The decoy set was further
filtered to ensure that the decoys are capable to fit into the binding
pocket and have no negative charge, which would result in repul-
sion from Asp113, resulting in 773 decoys (see Supplementary data
for details). The entire test set was then docked into the B2AR/
B2AR⁄ receptor structures using Autodock Vina [34]. Note that
we only needed to extract four snapshots from the first 20 ns on
MD simulations for docking, as the development of protein/ligand
contacts in the ligand binding pocket is completed within the first
5 ns of simulation (see Supplementary data for further informa-
tion). To obtain a quantitative criterion to discriminate between
agonists and antagonists/inverse agonists, we calculated the IFP
for each binding pose and compared it to the corresponding
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reference IFP. Reference IFPs were calculated from the dynamic
binding modes of epinephrine and carazolol in B2AR⁄ and B2AR
(see methods for details). As a measure of similarity, we used the
Tanimoto coefficient [35] as a ligand score (tIFP). tIFPs were shown
to be effective in other VLS studies with inactive GPCR models
[27,36]. Only the highest scoring pose for each ligand was consid-
ered for the final ranking and discrimination into pharmacological
classes. Ligands were ranked by their Tanimoto coefficient to the
reference IFP (highest first). High coefficients indicate that the
binding mode of the ligand exhibits many interactions that are also
present in the reference IFP.

Fig. 3 shows the obtained ligand poses for the antagonists/in-
verse agonists (r)-pindolol, (r)-timolol and (s)-CGP-12177, and
for the agonists (s)-reproterol, (s)-pirbuterol and (r)-dobutamine.
Note that the antagonists/inverse agonists were docked into the
inactive receptor models and the agonists into the activated recep-
tor models. The ligands fit nicely into the binding pocket. Scores
and ranks for the ligand poses in Fig. 3 are given in Table S1. While
agonists could easily be docked into the protein, the Autodock
exhaustive parameter needed to be increased 10-fold to give good
poses for antagonists and inverse agonists. It emerges that scoring
the ligand by tIFP is mandatory to receive good rankings for the
experimentally known ligands. Antagonists/inverse agonists are
reasonably well scored by the native scoring function of Vina:
e.g. carazolol, the ligand in the crystal structure 2RH1, is assigned
rank 10 with a predicted energy of �10.6 kcal/mol and CGP-12177
is ranked 38 with �9.4 kcal/mol. However, pindolol and timolol
score much poorer, obtaining the ranks 134 and 885, respectively.
Scoring by tIFP drastically improves the ranking: the antagonist/in-
verse agonist poses in Fig. 3 are ranked among the first 20 places.
This trend is even stronger for agonists, most of which are ranked
poorly by the native Vina scoring function. Vina’s scoring function
is optimized towards experimentally measured affinities [34].
Fig. 3. Exemplary docking poses of antagonists/inverse agonists (left panel) and agonists
carazolol simulation, agonists into structures of the B2AR⁄-epinephrine simulation. The p
Left panel: Antagonists/inverse agonists (s)-pindolol, (r)-timolol and (s)-CGP-12177. Rig
However, some ligands, including the native agonist epinephrine,
bind with micromolar affinity to B2AR [28,37]. Therefore, the affin-
ity of a particular GPCR ligand does not always coincide with its
ability to activate the receptor. Furthermore, as docking means try-
ing to place ligands into binding cavities, which from their form are
not optimized to specifically incorporate them, affinities deter-
mined in silico may be wrong. We assume that ligands with similar
activation properties (e.g. agonists) also share similar protein–li-
gand interaction patterns, which can be quantified by using our
tIFP scheme. A nice example for the power of our approach is (r)-
pindolol: though it binds with nanomolar affinity to B2AR, it is
scored poorly by the Vina scoring function. Nevertheless, the
antagonist-defining protein/ligand contacts are already present,
so that out tIFP scheme identifies (r)-pindolol as antagonist/inverse
agonist. Hence, while searching for an affine ligand does not neces-
sarily lead to an activating ligand, this lack in information can be
overcome by applying our tIFP scheme. We have to mention that
though pindolol can also be seen as a partial agonist [30], we can-
not identify it as such with our approach. The structural differences
between a partial agonist-bound and an antagonist-bound receptor
seem to be too subtle to be recognized by our method. Neverthe-
less, our approach correctly identifies pindolol as antagonist
instead of as (full) agonist.

Fig. 4 A shows enrichment factors (EF) for all VLS experiments
for the 0.5%, 1% and 2% top-scoring ligands, respectively. Note that
Fig. 4 shows the data for the filtered decoy set (see Supplementary
data for details). Virtual screening results for the unfiltered decoy
set are shown in the Supplementary data (Fig. S5). EF is defined
as the fractions of compounds with desired properties found di-
vided by the fraction of the full library screened (see Supplemen-
tary data for details). By the means of EFs, the active (B2AR⁄)
receptor model outperforms the inactive model (B2AR) in retriev-
ing agonists. The moderate EF of B2AR for agonists agrees well with
(right panel). Antagonists/inverse agonists were docked into structures of the B2AR-
oses shown have been ranked by their tIFP-scores (see ranks and scores in Table S1).
ht panel: Agonists (s)-reproterol, (s)-pirbuterol and (r)-dobutamine.



Fig. 4. Performance of the different models in discrimination between agonists and
antagonists/inverse agonists. The filtered dataset was used to compute the results
for this figure. (A) Enrichment factors (EF) of the VLS experiments for antagonists/
inverse agonists and agonists using B2AR and B2AR⁄ as receptor structures. EF
values are shown for cutoffs of 0.5%, 1% and 2%. The dotted line indicates the
theoretical maximum EF value. Black: EF for agonists docked into B2AR. Cyan: EF for
agonists docked into B2AR⁄. Red: EF for antagonists/inverse agonists docked into
B2AR. Orange: EF for antagonists/inverse agonists docked into B2AR⁄. While B2AR is
better capable to find antagonists/inverse agonists in a given ligand library, B2AR⁄ is
better suited to find agonists. (B) ROC curves of B2AR (black) and B2AR⁄ (cyan) for
antagonists/inverse agonists. The curve of B2AR rises earlier, but the overall course
is very similar for B2AR and B2AR⁄. B2AR performs better in finding antagonists/
inverse agonists than B2AR⁄. (C) ROC curves of B2AR (black) and B2AR⁄ (cyan) for
agonists. The ROC curve for B2AR⁄ shows the superior performance of B2AR⁄ to
recognize agonists relative to B2AR. Increasing the exhaustiveness parameter leads
to even better performance as indicated by the curve in magenta.
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the results of other studies [36,38]. Nevertheless, B2AR⁄ displays
higher enrichment rates for agonists than B2AR at a cut-off of
0.5% and 1%. It is striking that the opposite is true for antago-
nists/inverse agonists. This shows that the model of the activated
receptor selectively identifies agonists, while the inactive crystal-
structure based model is selective for antagonists and inverse ago-
nists. This is an encouraging finding and highlights that dynamic
homology modelling using the opsin crystal structure as a tem-
plate can yield ‘‘activated’’ receptor models of class A GPCRs.

Another way to characterise the VLS results is a receiver opera-
tor characteristic (ROC) [39]. We checked in this analysis how
many percent of agonists or antagonists/inverse agonists present
in a ligand library (true positives) are found at a given percentage
of inactive ligands or ligands with undesired effect on the receptor
(false positives). Fig. 4B and C show the results of the ROC-analysis.
AUC-values (area under ROC curve) are similar for the two cases
with 0.81 for B2AR and 0.82 for B2AR⁄. The course of the curves
reveals that antagonists/inverse agonists are higher ranked and
thus more readily identified in B2AR than in B2AR⁄. This shows
as well, that B2AR is the more appropriate structure for the identi-
fication of antagonists/inverse agonists of the b2-adrenergic recep-
tor as shown in other recent studies [13]. Fig. 4C shows the ROC-
curves for agonists. B2AR⁄ shows superior performance over
B2AR for agonists. The ROC-curve of B2AR⁄ rises much faster than
the curve of B2AR and a bigger part of all agonists is highly ranked.
For all false positive rate values, the ROC-curve of B2AR⁄ lies above
or equal relative to the B2AR curve. Hence, B2AR⁄ is much more
suitable for the identification of agonists, which is also reflected
by the AUC of 0.9. To test whether results can be improved when
spending more computational recourses on the search of a suitable
ligand pose, we repeated the docking of agonists with a 10-fold
increased exhaustiveness value (from 8 to 80), like we did for
antagonists/inverse agonists. This enhances the performance even
further and leads to an AUC of 0.95 for B2AR⁄. A ROC-analysis for
ranking based on Autodock scores alone is shown in Fig. S6. As
can be seen, our IFP scheme outperforms an analysis solely basing
on evaluating binding energies in finding suitable ligands as well as
classifying them into agonists and antagonists/inverse agonists.

4. Conclusion

This study shows that the active state structure of opsin is suited
as a structural basis to identify GPCR agonists without the incorpo-
ration of additional experimental data. We need to emphasize that
dynamic homology modelling starting from active state GPCR crys-
tal structures does not necessarily produce active state structures,
but rather ‘‘active-like’’ models that display characteristics of active
GPCRs. Nevertheless, such dynamic homology ‘‘active-like’’ models
can be used to selectively find agonists of other GPCRs of interest
in structure-based discovery campaigns. Together with models from
inactive structures, our method can facilitate the discovery of bioac-
tive lead structures that target GPCRs with a desired effect.
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