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INTRODUCTION

The reliable prediction of protein structure from genetic information is an impor-

tant challenge in structural biology. A solution to this challenge would provide insights

into protein function and could greatly facilitate the design of therapeutic drugs.

Currently, researchers rely on X-ray crystallography and nuclear magnetic reso-

nance (NMR) spectroscopy to determine protein structures. These methods are

labor- and cost-intensive. As a result, the protein data bank (PDB)1 contains

structural information for only a small fraction of the proteins with a known

genetic sequence. If computational methods were able to predict protein structures

efficiently and accurately, they could complement experimental methods, making

structural information about proteins as readily available as sequence information.

Protein structure prediction methods have progressed substantially over the

years.2–9 However, the inadequacy of conformation space search techniques

remains a major challenge.10 Because of the vast size of conformation space and

the ruggedness of the protein energy landscape, existing search methods fail to

find near-optimal minima in the energy landscapes of all but the smallest proteins.

To enable general, accurate structure prediction, it is thus of paramount impor-

tance to devise conformation space search methods capable of efficiently finding

near-optimal minima in high-dimensional conformation spaces.

The challenge of search in high-dimensional conformation spaces is exacerbated

by the fact that any search method—no matter how effective—can only achieve

accurate results if it relies on accurate information about the search problem. In

the case of protein structure prediction, the most accurate information is captured

by computationally expensive all-atom energy functions. Most existing protein

structure prediction methods, however, rely on simplified, non-all-atom energy

functions to alleviate the difficulties of conformation space search. We believe this

inherently limits their ability to perform accurate structure prediction.

To illustrate the importance of accurate information for protein structure predic-

tion, we predict the structure of retinoic acid binding protein (136aa) using two dif-

ferent prediction methods. Both prediction methods attempt to find low-energy

conformations in an accurate, but non-all-atom energy function. The predictors dif-

fer in the conformation space search method they employ. The first predictor uses

model-based search (MBS), our new conformation space search algorithm intro-

duced in this article. The second predictor uses simulated annealing Monte Carlo

search (MC). Figure 1 (a) compares the resulting predictions, showing that MBS

finds lower-energy structures in the non-all-atom energy landscape than MC.
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ABSTRACT

The most significant impediment

for protein structure prediction is

the inadequacy of conformation

space search. Conformation space

is too large and the energy land-

scape too rugged for existing

search methods to consistently

find near-optimal minima. To alle-

viate this problem, we present

model-based search, a novel con-

formation space search method.

Model-based search uses highly

accurate information obtained

during search to build an approxi-

mate, partial model of the energy

landscape. Model-based search

aggregates information in the

model as it progresses, and in

turn uses this information to

guide exploration toward regions

most likely to contain a near-opti-

mal minimum. We validate our

method by predicting the struc-

ture of 32 proteins, ranging in

length from 49 to 213 amino

acids. Our results demonstrate

that model-based search is more

effective at finding low-energy

conformations in high-dimen-

sional conformation spaces than

existing search methods. The

reduction in energy translates into

structure predictions of increased

accuracy.
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We evaluate the predictions obtained by both algo-

rithms using an all-atom energy function. The resulting

scatter plot is shown in Figure 1(b). We see that MBS’

predictions are energetically indistinguishable from

those obtained using MC. Even though MBS is able to

find lower-energy structures in the non-all-atom energy

landscape, indicating more effective conformation space

search, this advantage vanishes in the all-atom land-

scape. This implies that more effective search alone will

not necessarily lead to improved prediction accuracy. To

take advantage of more effective conformation space

search, it is necessary to search a more accurate energy

landscape.

In this article, we present model-based search, a new

conformation space search method for finding minima in

protein energy landscapes. Model-based search combines

highly effective conformation space search with the abil-

ity to perform search using highly accurate all-atom

energy information. The improvements afforded by our

approach are based on two main contributions. First, our

method is more effective than previous methods at iden-

tifying and selecting the appropriate regions to focus

resources. Second, enabled by the first contribution, our

method is able to obtain high-quality all-atom informa-

tion without incurring a significant performance penalty.

Experiments demonstrate that the combination of

more effective conformation space search and highly

accurate information results in the prediction of struc-

tures of lower energy than those predicted by one of the

leading structure prediction protocols. We also show that

this reduction in energy translates into more accurate

structure predictions. Predictions for which reduced

energy does not lead to improved prediction accuracy

identify errors in the energy function and thus may lead

to the improvement of these functions.

RELATED WORK

The conformational space of proteins is too large to be

searched exhaustively.11 This is true even for small pro-

teins. Conformation space search methods thus have to

focus exploration on a small fraction of the search space.

The ability to choose appropriate regions, i.e. regions

that are highly likely to contain good minima, will crit-

ically affect the effectiveness of a search method. In this

section, we review common conformation space search

methods and examine how they guide the exploration of

the conformation space toward regions of the energy

landscape that are likely to contain good minima.

The most basic approach for conformation space search

is the Metropolis Monte Carlo method.12 It does not ex-

plicitly select regions of conformation space but instead

guides the exploration of the search space toward low-

energy regions. To achieve this, the Metropolis Monte

Carlo method remembers only a single piece of informa-

tion, namely the energy value of the current step. Based

on this information, the next exploration step is accepted

if the new conformation is lower in energy, and if the

energy increases, the new conformation is rejected with

probability proportional to the increase in energy.

The Metropolis Monte Carlo method is susceptible to

local minima. Much of the ongoing work on conforma-

tion space search aims to overcome this problem. To

increase the chances of escaping small local minima, simu-

lated annealing,13,14 for example, varies the probability of

accepting increases in energy during different stages of the

search. A number of other approaches maintain multiple

samples with different step sizes and transition probabil-

ities, also in an attempt to overcome the problem of local

minima. These approaches include basin hopping,15,16

Figure 1
Discrepancies between the non-all-atom and the all-atom energy
function illustrate that accurate conformation space search must rely on

all-atom information. (a) Structures found by model-based search

(MBS) in the non-all-atom energy function are lower in energy than

those found by a Monte Carlo-based method (MC). (b) These

structures become energetically indistinguishable when evaluated in the

all-atom energy function. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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jump walking,17 multi-canonical jump walking,18 and

the replica exchange Monte Carlo method.19 Even though

these methods improve the effectiveness of conformation

space search, they are subject to the same limitations as

they direct exploration by the same principle as the Me-

tropolis Monte Carlo method.

The performance of Metropolis Monte Carlo (MC)

methods can be improved by reducing the number and

the depth of local minima. To achieve this, one can

smooth the protein’s energy landscape.20,21 This will

have the desired effect on the local minima, but it will

invariably introduce inaccuracies in the energy landscape.

These inaccuracies are due to the merging or shifting of

minima or may arise as a result of rank inversions.22 In

principle, smoothing is similar to simulated annealing

methods: they make it easier to overcome the energy bar-

riers between local minima, in particular during the early

phases of the search. This insight has been confirmed by

experimental studies.23

Current methods for protein structure prediction

employ smoothing in conjunction with Metropolis

Monte Carlo-based search methods. Smoothing can be

achieved with multi-resolution energy functions. Early

stages of the search are conducted in a simpler, back-

bone-only energy function. As search progresses, the

energy function becomes increasingly accurate, until an

all-atom energy function is used to evaluate the final

decoys.24 MC methods use the backbone-only energy

function to assemble the majority of a protein’s structure,

and the all-atom energy function to make smaller struc-

tural changes and to evaluate prediction quality.

The combination of smoothing and Metropolis Monte

Carlo-based search methods has proven very successful in

practice and is currently the most widely used approach to

conformation space search.7 However, this combination of

the two methods also inherits their disadvantages: MC

methods only use a very limited amount of information

(only the current energy value) to guide search, which due

to smoothing is likely to be inaccurate, leading to the prob-

lem discussed in the Introduction section. In the next sec-

tion, we will present our novel conformation space search

method that addresses these problems. It avoids the prob-

lems of smoothing by including the most accurate infor-

mation available (obtained using the all-atom energy func-

tion), and it uses much more information than MC meth-

ods to select the region of conformation space to search.

The two main hypotheses of our research are that (1)

the selection of appropriate regions is the key to improv-

ing conformation space search, and that (2) this selection

should be informed by as much highly accurate informa-

tion as possible. Support for these hypotheses can be

found in existing, successful search methods that have

been developed both inside and outside of protein struc-

ture prediction.

Genetic algorithms25 introduce the idea of maintain-

ing multiple samples and exchanging information among

them. This improves on the amount of information

maintained by MC-based methods. Tabu search26–28

maintains aggregate information about the entire history

of the search to exclude the so-called tabu regions from

further exploration. These methods demonstrate that the

information obtained during search can be beneficial in

informing further exploration. Similar ideas can be found

in conformation space annealing (CSA)29 and conforma-

tion-family Monte Carlo (CFMC),30 two conformation

space search methods developed specifically for protein

structure prediction. These methods monitor the state of

multiple concurrent searches in order to ensure broad

coverage of the search space.

Search is one of the foundational topics in the study

of artificial intelligence (AI).31 It is thus not surprising

that the idea of using information obtained during search

to guide search has been studied extensively in AI. These

methods aggregate information in what we will call a

‘‘model.’’ They then use this model to select those regions

of the search space for exploration that are most likely to

contain the sought minimum. Two such methods are

STAGE32 and MIMIC.33 These methods use a model to

make predictions about regions of the search space, even

regions that have not been explored yet.

Another relevant area of research within artificial intel-

ligence is active learning. In active learning, the goal is to

learn a function from examples. The learner is able to

interactively select training examples so as to maximize

learning progress.34,35 Active learning not only requires

a model to maintain information about the examples

seen so far but it also requires a strategy to select the

best next example. Applied to conformation space search,

such a strategy would redirect search from one region to

another in response to the information obtained.

The method for conformation space search presented

in the following section will draw inspiration from AI

search and from active learning. We leverage relevant

concepts in the context of protein structure prediction,

where the search space is extremely high-dimensional

and obtaining accurate information about this space is

computationally expensive. Both of these characteristics

impose the need to intelligently guide search so as to

minimize required computational resources while maxi-

mizing the use of information obtained during search.

MODEL-BASED SEARCH

Effective conformation space search must guide explora-

tion toward regions of conformation space likely to contain

the global minimum. Consequently, the effectiveness of

search is based on how accurately the relevant regions can

be identified. The effectiveness of this identification, in

turn, depends on the usage and accuracy of information.

We refer to the representation of relevant regions as a

model of the energy landscape. At any point during the
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search, this model will represent an approximation to a

small part of the energy landscape. The model contains

important information that is leveraged by model-based

search to guide exploration toward relevant regions of

conformation space. Because of the central role of this

model in making our conformation space search method

accurate and efficient, we refer to our search method as

model-based search.

Model-based search incrementally refines an initial

coarse model of conformation space by incorporating new

information obtained during an ongoing search. Informa-

tion quality is critical to direct resources toward the correct

regions of space. The acquisition of high quality informa-

tion is driven by three core algorithmic elements described

below. Figure 2 illustrates the use of these algorithmic ele-

ments for a single iteration of model-based search.

1. Characterization of Regions as Funnels. At the core of

model-based search is a method to identify meaningful

regions of conformation space. Instead of viewing sam-

ples in isolation, our method groups samples so as to

capture the funnel-like quality of the landscape (see

Fig. 2(b)). Section Characterization of Regions as Fun-

nels describes how funnels can be computed efficiently,

while accurately capturing coherent regions of the

energy landscape with similar biological characteristics.

2. Assessment of Funnel Relevance. To assess the relevance

of a region as accurately as possible, we acquire accu-

rate information about that region. Because our

method of determining regions ensures that all sam-

ples in a region share biological characteristics, we can

draw conclusions about the relevance of an entire

region based on high-accuracy information about

carefully chosen samples. Figure 2(c,d) illustrates the

efficient acquisition of information and how that in-

formation is used to assess the relevance of a region.

3. Coordination of computational resources. Once meaning-

ful regions have been identified and the quality of each

region has been assessed, we use this information to dis-

tribute computational resources in accordance with this

assessment. Figure 2(e,f) illustrates this process.

In this section, we present model-based search as a

general optimization method for high-dimensional

spaces, making as few domain-specific assumptions as

possible. The optimization algorithm is applicable to

problems that exhibit spatial coherence and global varia-

tion. Spatial coherence means that the quality of a spe-

cific point in the solution space reveals information

about its immediate neighborhood. Global variation

means that there are significant differences between

‘‘good’’ and ‘‘bad’’ solutions in the search space. Together

with spatial coherence, this implies that there are ‘‘good’’

and ‘‘bad’’ regions of space. The assumptions of spatial

coherence and global variance, we believe, are quite gen-

eral and are shared by many real-world problems.

We make one domain-specific assumption, namely

that we are searching a series of related energy functions.

Search of conformation space begins in a computation-

ally efficient, low-accuracy energy function and incre-

mentally progresses to a computationally costly, high-

energy function. This technique is commonly applied in

protein structure prediction.36 This assumption is only

required for the part of our search method described in

section Assessing Funnel Relevance. The overall search

method remains valid even if this assumption does not

hold and only a single energy function is searched.

The following three sections provide detailed descrip-

tions of the algorithmic elements; Implementation sec-

tion augments the description provided below with

details about the implementation.

Characterization of regions as funnels

The notion of a conformation space region permits

us to reason about volumes of space as a single entity.

This is more effective than reasoning about individual

samples. To reason about an entire region in a meaning-

ful way, however, the conformations in that region

have to share some relevant property. Only then will

it be possible to assess the relevance of a region as a

whole.

Some existing clustering techniques used in CSA,29

CFMC,30 and SPICKER,37 incorporate high-dimensional

spheres, or hyper-spheres, to describe regions of conforma-

tion space. Such a region is described by a point in confor-

mation space (the center of the sphere) and a radius, usu-

ally given by the backbone RMSD in Ångstrom between

two conformations. Such a hypersphere is a simple repre-

sentation of conformation space volume but it is unlikely

to exclusively capture parts of space that share a relevant

property. The extent of a meaningful region will vary

greatly along the different dimensions of the space. This

holds true in particular in protein energy landscapes, in

which the motion of some degrees of freedom can cause

very large variations in energy, whereas other degrees of

freedom can move significantly without a major energetic

effect. Consequently, a hypersphere will include regions

with different properties, cause overlap between distinct

regions, or even merge distinct regions of conformation

space. Based on this inaccurate representation of confor-

mation space regions, it is difficult to guide search effec-

tively using conformation space techniques.

We propose the notion of funnels as a more accurate

representation for conformation space regions. We know

that the energy landscape of a protein contains many

such funnels. The funnel shape implies that a Metropolis

Monte Carlo run started at a point in a funnel has a

higher probability of leading to the bottom of that funnel

than of leaving it. We can thus view the entire funnel as

the domain of attraction for the energetic minimum of

the funnel. Hence, funnels represent a region of space in
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which all points share a property that is important for

search: they can all be associated with the same local

minimum in the energy landscape. Based on this well-

established fact, we believe that funnels provide a charac-

terization of conformation space regions appropriate for

guiding search (see Fig. 2(b)).

We identify funnels by exploiting the following simple

observation: In low-energy regions of a funnel the spatial

density of the samples resulting from Monte Carlo-runs

will be high. As we approach the ridge of a funnel, the

spatial density of samples decreases. The spatial density

of samples obtained from Metropolis Monte Carlo thus

Figure 2
Step-by-step illustration of a single stage of model-based search. Each image contains two energy landscapes. Rosetta’s approximate energy function

is shown on the top, Rosetta’s all-atom energy function on the bottom. Note that the global minimum in the approximate energy landscape does

not correspond to the global minimum in the all-atom energy landscape. (a) Each stage of model-based search (MBS) uses a model consisting of
2000 samples in the approximate energy function. The model in the first stage of MBS consists of samples generated by short Monte-Carlo runs. In

subsequent stages of MBS, the model contains samples from the preceding stage. (b) MBS groups the samples into funnels that accurately capture

coherent regions of the energy landscape. This expressive characterization of conformation space regions enables the computationally efficient

assessment of the relevance of a region based on the all-atom energy function. (c) To assess the relevance of a region as accurately as possible, we

acquire information from the all-atom energy function. The samples of all funnels are evaluated with Monte Carlo trajectories to Rosetta’s final

non-all-atom stage. For each funnel, the lowest-energy trajectory is continued through Rosetta’s all-atom energy function. The resulting energy is

interpreted as an indication of region relevance. (d) The all-atom scores obtained in the previous step are used to determine the relevance of

individual funnels. This information will guide the search towards the most promising regions of conformation space. In the image, region

relevance is illustrated by the color of the funnel. Lighter funnels correspond to more relevant regions. (e) Based on funnel relevance, the model is

pruned by discarding entire funnels and most of the samples within the remaining funnel. We retain the best half of the funnels and the top four

samples within each of the remaining funnels. Note that MBS discards funnels corresponding to low-energy regions in the approximate energy

function; it keeps those funnels that correspond to low-energy regions in the all-atom energy function. (f) MBS replaces discarded samples using

short Monte Carlo trajectories starting at the samples remaining in the model. Eighty percent of the starting locations for these trajectories are

chosen evenly across funnels; 20% of the starting locations are chosen proportional to the relevance of the funnel. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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captures the extent and energetic variation of the lower-

energy region of the funnel. It is this lower-energy region

that is most helpful for guiding search.

MBS identifies funnels using a heuristic clustering

method. This method is computationally efficient and,

more importantly, sensitive to density variations of sam-

ples in different dimensions of conformation space.

Because of its ability to identify directional variations in

sample density, our method can identify clusters of arbi-

trary shapes and varying local densities, even when they

are close to each other. The method does not impose a

particular representation for the funnel, such as a hyper-

sphere, but lets the data determine the extent and shape

of the conformation space region.

We now describe the details of the funnel finding algo-

rithm. Starting with a set of conformation space samples,

the lowest energy sample is selected as the root of a tree.

We build a tree by adding samples to the tree in order of

increasing distance to the root. A new sample will be

connected to the closest node of the tree, as long as the

distance between the new sample and the closest node

does not exceed the average length of edges on the path

between the node and the root of the tree by more than

a constant factor. This insertion operation is illustrated

in Figure 3. The tree-building algorithm terminates when

all remaining samples are too far away from nodes in the

tree to be added. The computed tree represents a funnel;

the root of the tree is at the bottom of the funnel.

This procedure is repeated, starting with the lowest-

energy sample among the remaining samples, until all

samples have been processed into trees.

We now have obtained trees of samples, each of which

represents a funnel. Each funnel captures a meaningful

region of conformation space. The shape of this region is

determined by the properties of the underlying energy

landscape. The connectivity of the tree and the degree of

its vertices capture additional information about proxim-

ity, compactness, and transition characteristics between

nearby samples. This illustrates the benefit of viewing

samples in context rather than in isolation: the context

reveals additional information highly relevant to our goal

of effectively searching conformation space.

Our clustering method achieves expected O(n log n)

time complexity by sacrificing provable correctness of the

clustering results. In our experience, the gain in efficiency

by far outweighs the consequences of the slight inaccura-

cies in the resulting clusters.

Assessing funnel relevance

An accurate assessment of the relevance of a region is

essential for effective conformation space search. Many of

the funnels will prove to be irrelevant for search and

should be discarded from our model. Among the remain-

ing regions, we would like to allocate computational

resources proportional to the estimated relevance of a

region. Therefore, to guide conformation space search

most effectively, we need a way to accurately evaluate the

relevance of a conformation space region.

Our tree-based representation of funnels enables an effi-

cient and highly accurate assessment of region relevance.

The tree representation of samples provides us with a sim-

ple way of determining the size, shape, and sample density

of funnels. These properties of the region, as well as the

energy values of individual samples, reveal information

about the relevance of a funnel. They can be combined in a

variety of ways to estimate relevance. In this section we do

not focus on how to combine all available information to

assess region relevance but instead on how the accuracy of

sample energy evaluation can be improved. The determi-

nation of region relevance based on all available informa-

tion will be the subject of future work.

Model-based search enables the assessment of region

relevance based on highly accurate all-atom energy evalu-

ations. The algorithm achieves this by leveraging the fun-

nel-based representation of the model. Regions in the

model have been determined based on the property that

local searches from most conformations in a region will

be investigating the same minima. We exploit this prop-

erty to assess the relevance of an entire region by assess-

ing the relevance of several conformations inside the

region. Because of the aforementioned property of the

region, the quality (energy) of these samples provides in-

formation about the relevance of the entire region (see

Fig. 2(c,d)).

Model-based search assesses the relevance of a region

by determining the all-atom scores for the lowest-energy

non-all-atom samples in the region. The all-atom score

of a sample is determined by performing a Metropolis

Monte Carlo run through increasingly accurate energy

functions, including a final, highly accurate all-atom

energy function (the details of this computation are

Figure 3
Building a funnel from samples: The lowest-energy sample (solid gray)

is chosen as the root of a tree. Samples are inserted in order of

increasing distance to the root. To insert a new sample (black), the

distance between the new sample, the root, and all of its children is

considered. If the root is closest to the new sample, the sample is

inserted as a child of the root. Otherwise, the process recurses on the
child closest to the new sample. When a leaf is reached, the new sample

is inserted as its child. Following this procedure, many sub-trees (gray

outline) remain unexamined during the insertion.
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described in Implementation section). The best score of

all evaluations determines the score of a region.

As the experiments presented in Results and Discus-

sion section will demonstrate, this procedure for assessing

the relevance of a region greatly improves the accuracy

and efficiency of conformation space search. The accu-

racy is improved because the assessment of relevance is

based on the most accurate source of information avail-

able: an all-atom energy function. This accurate assess-

ment of relevance would not be computationally feasible

for all conformations generated during an entire confor-

mation space search. By using a few costly all-atom com-

putations to judge the relevance of entire regions of con-

formation space, however, the amortized computational

cost is negligible. Information is leveraged very effectively

to guide search towards important regions of conforma-

tion space.

Coordination of resources

Model-based search allocates computational resources

to regions based on their estimated relevance. If the assess-

ment of region relevance were perfect, only a single region

should be explored further. No assessment of region rele-

vance would lead to an equal exploration of all regions.

Model-based search attempts to find a middle-ground

between these two extremes so as to guide search effec-

tively while accounting for inaccuracies in assessment of

region relevance by spreading computational resources.

Model-based search discards irrelevant regions and

redundant samples to maintain computational efficiency

(see Fig. 2(e)). Available computational resources are di-

vided into two parts. The first part is divided equally

among all regions of the model. The second part of the

computational resources is allotted to a region propor-

tional to its estimated relevance. To replace discarded

samples, model-based search initiates short Metropolis

Monte Carlo trajectories from the samples remaining in

the model. The resulting samples are added to the model

(see Fig. 2(f)).

IMPLEMENTATION

Integration with rosetta

The focus of our research is the development of effec-

tive conformation space search techniques. To leverage

existing software infrastructure, we have integrated

model-based search with Rosetta,24,36 a leading method

for protein structure prediction that has repeatedly per-

formed well in the CASP competition.38–40 Our imple-

mentation replaces the simulated annealing Metropolis

Monte Carlo search method implemented in Rosetta

with model-based search, allowing us to rely on Rosetta’s

energy function, local search methods, and infrastructure

for representing proteins, etc.

Because of our integration with Rosetta, model-based

search inherits the following algorithmic features. Rosetta

uses the fragment assembly approach to reduce the size of

the search space. Initial backbone-only samples are gener-

ated by setting all f and w angles of the backbone to zero.

Local search for low-energy conformations is started from

this point in conformation space. The local search, based

on the Metropolis Monte Carlo method, progresses in a

number of stages. As the search progresses through the

different stages, the move set changes, the number of local

search steps are varied, and the accuracy of the energy

function is increased. The initial move set replaces 9-mers

of the backbone with candidate structures retrieved from

the PDB. The move set then changes to 3-mers and finally

to a full angle representation in later stages. The energy

function progresses gradually from a coarse-grained low-

resolution energy function that considers secondary struc-

ture, residue environment, and inter-residue pairing to a

full-atom energy function that includes side chains and

solvation effects. Additional details about the move sets,

and energy functions can be found in the literature.24,36

Iterative model refinement

Each iteration of model-based search uses the same

move set and energy function as the corresponding stage

in Rosetta. Search begins with 2000 extended structures.

The first MBS stage occurs after an initial 4000 Monte

Carlo fragment insertions have been attemped for each

sample. The remaining 32000 Monte Carlo steps inside

Rosetta are divided into 13 stages based on when terms

are introduced into the approximate energy function.

Characterization of regions as funnels

The tree-based algorithm for finding funnels described

in Characterization of Regions as Funnels section only

relies on a single parameter: the constant factor that

determines whether or not a node is added to the tree.

In our implementation we empirically chose that factor

to be 1.2. Hence, a node is added to the tree if its dis-

tance to the closest node in the tree is less than 1.2 times

the average length of edges between the root of the tree

and the closest node.

Our implementation of the funnel-finding algorithm

also terminates tree construction if more than 5% of all

samples have been added to the tree. Furthermore, trees

of less than 5 samples are merged with the closest funnel.

Funnels that are too large are not helpful in differentiat-

ing between different regions of conformation space.

Funnels represented by too few samples arise when most

funnels have been discovered. The few remaining samples

could not be added to any of the previously found fun-

nels. They are likely to be distributed over the entire con-

formation space and do not represent a meaningful fun-

nel in the energy landscape.
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Assessing funnel relevance

Model-based search assesses the relevance of a region by

gathering information about what energy level is attain-

able by local searches started in that region. The exact pro-

cedure is described in Assessing Funnel Relevance section

and illustrated in Figure 2(c). To determine an estimate of

the attainable energy level, model-based search continues

the local searches for all samples in a funnel to the final

non-all-atom energy stage in Rosetta. The computational

cost of doing this is small, as the energy evaluations in

non-all-atom energy functions are computationally effi-

cient. Among the resulting samples, the best five are

selected. For each of these, model-based search computes

a computationally expensive all-atom energy score after

adding side-chains to the backbone. The best of these

scores is used as the energy score for the entire funnel.

The searches performed during this evaluation are

entirely local; they run through the energy functions

associated with the remaining stages of Rosetta, without

being influenced by model-based search. To leverage the

information obtained during these local searches, we

remember a trace of the search for the best 80 full-atom

energy evaluations. A trace contains the conformation at

the transition points between the different energy func-

tions. Once model-based search has progressed to a par-

ticular stage, the model is augmented with the conforma-

tions at that stage from those 80 traces.

The current implementation of model-based search

estimates region relevance exclusively based on the full-

atom energy score. In future research, we will investigate

how region relevance can be evaluated by metrics such as

funnel size and density.

Coordination of resources

Resource allocation first occurs between funnels. The

resources assigned to a funnel are then distributed among

the samples within each funnel.

We begin by discarding 50% of the funnels in the

model based on their relevance. Eighty percent of the

computational resources are distributed evenly among

the remaining funnels. The remaining 20% are distrib-

uted to funnels proportional to their relevance score. The

increased emphasis on particular regions is amplified

over multiple stages, increasing the focus on a consis-

tently relevant region at an exponential rate.

Within each funnel we keep the four lowest-energy

samples. Eighty percent of the computational resources

assigned to a funnel are distributed evenly between these

samples; the remaining 20% are distributed proportional

to sample score.

RESULTS AND DISCUSSION

In this section, we compare the effectiveness of model-

based search (MBS) with that of simulated annealing

Monte-Carlo search method (MC) implemented in

Rosetta.24,36 By comparing with Rosetta, we achieve two

objectives. First, because MBS uses the same energy func-

tion and local search as Rosetta, we are able to stage a

fair test. Second, because the search method of Rosetta is

highly optimized for protein structure prediction, we

gain a realistic view of MBS’s performance in this do-

main. Rosetta’s performance in CASP indicates that the

specific implementation of MC is equivalent in perform-

ance to other available search methods.

In our evaluation, MBS and MC rely on the same pa-

rameters wherever possible. MC and MBS go through a

number of stages (see Integration with Rosetta section);

in each stage they use the same move sets, number of

local search steps, and energy function. But although in

MC all samples traverse all stages and these traversals

proceed independently of each other, MBS orchestrates

these trajectories, stopping some and splitting some into

multiple trajectories in later stages. MBS also generates

search trajectories for the evaluation of region relevance

(see section Assessing Funnel Relevance). As a result,

MBS generates about 3000 decoys when 2000 samples are

used in each stage of the model. Given the computational

overhead of model maintenance in MBS, the computa-

tion time required to compute 3000 MBS samples

approximately corresponds to the time required to gener-

ate 4000 MC decoys. Consequently we compare MBS

searches with a model size of 2000 samples with MC

searches generating 4000 decoys.

We would like to emphasize that our experiments are

exclusively intended to evaluate the effectiveness of

search. The main criterion for the evaluation of our ex-

perimental results given in Table 1 must therefore be the

energy of samples produced by the search. The energy of

the native state and for samples produced by MC and

MBS are given in the columns labeled ENative, EMC, and

EMBS, respectively.

In recent work, Bradley and Baker2 make highly accu-

rate structure predictions, using an order of magnitude

more samples than we use in our experiments. Our

experiments thus do not give a representative view of the

prediction quality obtained by Rosetta. Our experiments

demonstrate that MBS searches the energy function of

Rosetta more effectively than the MC search imple-

mented in Rosetta, given an equal amount of computa-

tional resources. The performance increase of MBS rela-

tive to MC will become more pronounced when the

number of samples is increased, because MBS coordinates

the search of conformation space whereas in MC all sam-

ples are treated independently.

For our experimental evaluation, we chose 32 proteins

of varying sizes and secondary structure compositions.

These proteins were selected from recent CASP competi-

tions, from experiments performed by Bradley and

Baker,10 and from the PDB. The list of proteins is shown

in Table I. Search was conducted with two move sets: one

Model-Based Search
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excludes fragments from proteins homologous to our pre-

diction target, the other one includes these fragments. Both

move sets contain 200 fragments at each position, however,

the homology move set contains fragments more structur-

ally similar to the native structure of the prediction target.

Homology information in the fragment library simpli-

fies the search problem because it introduces a structural

bias towards homologous structures. Search using a

homology move set thus leads to lower energy samples and

more accurate structure predictions. Irrespective of the

move set, MBS search outperforms MC search (see Fig. 4).

To obtain native-like structures for comparison, we

run 100 relaxations on the all-atom structures found in

the PDB. We determine structural similarity between the

native state and predictions using the total score of the

global distance test (GDT_TS)41; the score is reported in

percent with 100% being a complete match between

structures. When RMSD is reported, it refers to all-atom

RMSD calculated by PyMOL given in Ångstrom. To

assess the energy of points in conformation space, we use

the unit-less number returned by Rosetta’s all-atom

energy function.

For the discussion of our results we divide the proteins

into four categories. Category 1 contains proteins for

which both MBS and MC make accurate predictions.

The second category encompasses proteins for which

MBS found lower-energy structures and made more

accurate structure predictions. For proteins in category 3,

MBS found structures that were lower in energy than the

native state, pointing to inaccuracies in the energy func-

tion. Finally, category 4 contains proteins for which nei-

ther MBS nor MC can find structures comparable to the

native state in terms of energy or structural similarity. In

the remainder of this section, we discuss the findings for

these four categories in detail.

Category 1: adequate conformation space search

For the seven proteins in category 1 (see Table 1),

MBS and MC perform equivalently. Both find structures

with an RMSD of less than 1.5Å from the native state.

Proteins in this category are relatively small (less than

116 amino acids). It is plausible that the conformation

spaces for these proteins are relatively easy to search.

Obviously, if MC search finds the global minimum of

the energy landscape, MBS cannot improve the result.

Figure 5 shows samples generated by MC and by MBS

for three representative proteins from category 1. The

scatter plots indicate that both MC and MBS find con-

formations in the bottom right of the graph, where the

structural match with native structures is very high and

the energy is low.

It should be noted that for one protein (434 repressor,

PDB: 1r69) MC finds a lower energy samples than MBS

(see Table I). The lower energy of the MC sample can be

attributed to the stochastic nature of the search.

Category 2: improved conformation space search

Category 2 consists of proteins for which MBS

searches conformation space more effectively than MC.

When the homolog move set was used, nine of the 32

proteins fell into this category. Using the homolog-free

move set, only two proteins fell into this category. For all

proteins in this category, MBS finds lower-energy sam-

ples than MC; these samples correspond to higher-accu-

racy structure predictions. These proteins range in size

between 59 and 195 amino acids.

The improvement of MBS over MC is illustrated in

the scatter plots in Figure 6. Samples generated by MBS

are lower in energy and in many cases overlap the energy

of the relaxed native structure.

The lower-energy predictions generated by MBS result

in more accurate structures. This is illustrated for two

proteins using the homolog move set in Figure 7 and

Figure 4
Homology information in the move set greatly improves the

effectiveness of search. With and without homology information, MBS

finds lower-energy samples and more accurate predictions than MC. (a)

Search with homolog move set (74aa, PDB: 1dtj). (b) Search with

homolog-free move set (74aa, PDB: 1dtj). [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com.]
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two proteins using the homolog-free move set in Figure 8.

Note that the structure prediction shown in Figure 7(c)

corresponds to the scatter plot shown in Figure 6(e). The

lowest-energy samples found by MBS only achieve a

GDT_TS of 72; nevertheless, with an RMSD of 2.7Å the

prediction is quite accurate.

The only protein in category 2 that is not accurately

predicted is Anthanilate Synthase (PDB: 1qdl). With a

Figure 5
For proteins in category 1 both MC and MBS adequately search conformation space, resulting in near-native structure predictions. Each point in

the scatter plots represents a conformation space sample. MC samples and native structures samples are drawn on top of MBS samples. These

results were obtained using the homolog move set. (a) RNA binding protein A (69aa, PDB:1di2). (b) Malonyl-CoA ACP transacylase (70aa,

PDB:1mla). (c) IF3-C (88aa, PDB:1tig). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 6
For the proteins of category 2, MBS outperforms MC. MBS finds lower-energy samples and these samples match the structure of the native protein

more closely than the samples obtained by MC. These results were obtained using the homolog move set. (a) Cold-shock protein (67aa, PDB:

1csp). (b) Aspartyle protease (99aa, PDB: 1hhp). (c) EF Hand parvalbumin (109aa, PDB: 1pva). (d) NTF2 M84E mutant (123aa, PDB: 1jb2). (e)

Retinoic acid binding protein (136aa, PDB: 1cbr). (f) Anthanilate synthase (195aa, PDB: 1qdl). [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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length of 195 amino acids, this is the second-largest pro-

tein in our test set. The scatter plot in Figure 6(f) shows

that the samples generated by MBS seem to lie on a tra-

jectory towards the native state but get stuck before

reaching it. These results indicate either that conforma-

tion space search still remains inadequate for proteins of

this length or that the energy function is inaccurate.

Category 3: inaccurate energy function

For six proteins model-based search finds conforma-

tions with lower all-atom energy than that of the native

state, regardless of the move set. The scatter plots shown

in Figure 9 illustrate this for two of the six proteins. In

the case of Cher domain 1 (Fig. 9(a)), both MC and

MBS find samples with a high GDT_TS. However, sam-

ples in the highest-density region exhibit little structural

similarity to the native state. These samples have lower

energy than the native protein. Figure 9(b) illustrates this

phenomenon even more strikingly: both search methods

and move sets find conformations considerably lower in

energy than the native structures.

These results obtained for proteins in category 3 show

that MBS searches conformation space more effectively

than MC. However, for proteins in this category, the

reduced energy of samples does not result in accurate

predictions. This is a consequence of inaccuracies in the

energy function. An inaccurate energy function guides

search towards wrong regions of conformation space. No

matter how much search is improved, it will not be able

to compensate for these inaccuracies.

Model-based search may serve as a tool to improve

energy functions. Once inaccuracies are identified, using

the results of accurate conformation space search, it may

be possible to identify and correct inaccurate components

of the energy function.

Category 4: inadequate conformation space search

This last category of proteins is the most interesting

one. For all proteins in this category neither MC nor

MBS adequately searches the conformation space. Using

the homolog move set, 10 proteins of varying sizes (from

69 to 180 amino acids) fall into this category. Using the

homology-free move set, 24 of the 32 proteins are in this

category. This large number indicates that search

becomes very difficult when the information contained

in homologous fragments is not available to the search.

Relative to the results for proteins in category 2, the

structural match with the native state is very poor. A

comparison of the scatter plots in Figures 6(f) and 9 also

reveals a qualitatively different behavior of search

between categories 2 and 4, i.e. between successful search

and unsuccessful search. The samples generated for cate-

Figure 7
Comparison of prediction accuracy for proteins in category 2 obtained by

MBS and by MC-based search using the homolog move set. Predicted

structures are shown in color, superimposed on native structures from the

PDB shown in gray. (a) MBS prediction for EF Hand parvalbumin

(102aa, PDB: 1pva) with an RMSD of 1.1Å and a GDT_TS of 92.4. (b)

MC-based search prediction for EF Hand parvalbumin with an RMSD of
5.3Å and a GDT_TS of 53.8. (c) MBS prediction for retinoic acid binding

protein (136aa, PDB: 1cbr) with an RMSD of 2.7Å and a GDT_TS of

72.2. (d) MC-based search prediction for retinoic acid binding protein

with an RMSD of 6.7Å and a GDT_TS of 30.8.

Figure 8
Comparison of prediction accuracy for proteins in category 2 obtained
by MBS and by MC-based search using the homolog-free move set.

Predicted structures are shown in color, superimposed on native

structures from the PDB shown in gray. (a) MBS prediction for 434

Repressor (61aa, PDB: 1r69) with an RMSD of 1.5Å and a GDT_TS of

86.8. (b) MC-based search prediction for 434 Repressor with an RMSD

of 2.3Å and a GDT_TS of 74.1. (c) MBS prediction for KH domain of

Nova-2 (74aa, PDB: 1dtj) with an RMSD of 1.4Å and a GDT_TS of

86.4. (d) MC-based search prediction for KH domain of Nova-2 with

an RMSD of 3.6Å and a GDT_TS of 64.1.
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gory 4 proteins do not form a trajectory toward the

native state whereas those for category 2 do. This differ-

ence is particularly apparent in Figure 10(b), where

search seems to be unable to access large regions of the

conformation space.

Category 4 seems to point to a fundamental problem

with model-based search. If none of the samples in the

initial model of MBS are close to native state, the search

conducted by MBS will focus on regions not containing

the native state of the protein. Overcoming this problem

seems to be the key to further improvements of confor-

mational space search based on MBS.

A previous study10 also achieved poor prediction quality

for three proteins from category 4, even though an order of

magnitude more all-atom samples were used. This indicates

that a mere intensification of sampling does not lead to a

discovery of the conformation space region containing the

native state. Also, because the size of category 4 proteins

varies significantly, we believe that the size of the conforma-

tion space is not the main source of this problem either.

We have two hypotheses that may explain the problem

encountered by MBS. The first hypothesis states that pro-

teins in category 4 have energy landscapes with a narrow

funnel leading to the native state. The second hypothesis

states that inaccurate intermediate energy functions may

steer search away from the region containing the native

structure.

The narrow funnel hypothesis explains why category 4

contains short as well as longer proteins. Already for

small proteins, the conformation space is too large for

Figure 9
For proteins in category 3 MBS finds conformations with lower energy than the native state, pointing to inaccuracies in the energy function. These

results were obtained using the homolog move set. (a) Cher domain 1 (72aa, PDB: 1af7). (b) Pore-forming cytolysin equinatoxin (166aa, PDB:

1kd6). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 10
For proteins in category 4 neither MBS nor MC search conformation space adequately. These results were obtained using the homolog move set.

(a) Glucose permease IIBC (77aa, PDB: 1o2f). (b) Zinc Finger Protein (135aa, PDB: 2j6a). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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search to accidentally discover a small region that repre-

sents the entrance to the funnel, unless the energy land-

scape contains large regions that slope towards it.

The narrow funnel hypothesis emphasizes the impor-

tance of understanding residual native structure present

in the denatured states of proteins. Biological proteins

exhibit residual structure as a consequence of interactions

among side-chains in close proximity along the back-

bone. In contrast, MBS has to discover this structure by

random assembly of fragments, a proposition of vanish-

ingly small probability. This probability is reduced even

further when homologs are excluded from the move set,

explaining the large increase in the number of category 4

proteins when homologs are removed from the move set.

It should be noted that for such narrow funnels, MC-

based search with random restarts may in some cases have

a higher probability of discovering the entrance to the

funnel. We observe this in 3 of the 10 proteins in category

4 for experiments using the homolog move set (elongation

factor 2, glucose permease IIBC, and enga protein).

A second hypothesis is also consistent with our observa-

tions. To find the entrance to the folding funnel in the all-

atom energy function, the energy function of stage i must

lead samples into the correct funnel of the energy function

at stage i1 1. This may not hold for proteins in category 4:

assume that search at stage i, MBS identifies the correct

minimum of the energy function. If local search in the

energy function at stage i 1 1 does not lead to the global

minimum when started from the minimum of stage i,

search will be guided away from the native structure and is

unlikely to recover from it, no matter whether MC or MBS

is used as the search strategy. Therefore, our second hy-

pothesis states that for category 4 proteins the global min-

ima in consecutive energy functions are shifted, preventing

search from identifying the correct folding funnel.

This second hypothesis, if true, may be an indication

that conformation space search is no longer the most

pressing problem in protein structure prediction. It may

be equally important to leverage the capabilities provided

by MBS to further improve the accuracy of the approxi-

mate energy functions.

CONCLUSION

Conformation space search remains a major obstacle

on the path toward accurate protein structure prediction.

A second challenge is the computational expense associ-

ated with accurate energy evaluations, defined by an all-

atom energy function. To reduce this computational bur-

den, many structure predictors simplify the energy func-

tion, at least in initial stages of the search. These simplifi-

cations can misdirect search and thus represents another

important difficulty for conformation space search.

In this article, we presented a conformation space

search method, called model-based search, which

addresses the aforementioned challenges. Model-based

search uses information acquired during search to identify

regions of conformations space most likely to contain the

global minimum. By focusing on these promising regions,

only small parts of the conformation space have to be

searched in detail. The reduction of the search space

improves the effectiveness of conformation space search.

Model-based search uses an all-atom energy function

to evaluate the importance of a region. By using all-atom

information instead of information from a simplified

energy function, model-based search identifies regions

with more biological relevance than could have been

found with the simplified energy function. As a result,

the reduction of search space allows search to examine

more relevant regions while excluding the unimportant

parts of the search space.

We demonstrate that model-based search finds lower-

energy conformations in protein energy landscapes than

other conformation space search methods. The reduction

in energy results in improved accuracy of the corre-

sponding protein structure predictions. The experimental

results discussed in this paper also point to important

directions for future improvements of conformation

space search.
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