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Abstract Formulating problems rigorously in terms of

optimization principles has become a dominating ap-

proach in the fields of machine learning and computer

vision. However, the systems described in these fields

are in some respects different to integrated, modular,

and embodied systems, such as the ones we aim to

build in robotics. While representing systems via op-

timality principles is a powerful approach, relying on it

as the sole approach to robotics raises substantial chal-

lenges. In this article, we take this as a starting point

to discuss which ways of representing problems should

be best-suited for robotics. We argue that an adequate

choice of system representation—e.g. via optimization

principles—must allow us to reflect the structure of the

problem domain. We discuss system design principles,

such as modularity, redundancy, stability, and dynamic
processes, and the degree to which they are compatible

with the optimization stance or instead point to alter-

native paradigms in robotics research. This discussion,
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we hope, will bring attention to this important and of-

ten ignored system-level issue in the context of robotics

research.

1 Introduction

Robotics is making progress in huge strides, some peo-

ple say. Others disagree and believe robotics has not

been able to establish itself as a discipline distinct from

control, mechanical engineering, and computer science.

This disagreement should be reason enough for the robo-

tics community to ask some questions.

A curious look over to some other rather young dis-

ciplines may prove helpful. Take machine learning, for

example. Originally a part of computer science and AI,

it now has established itself as a new discipline with

whole university departments dedicated to it. One of

the catalysts of progress in machine learning has been

the extensive use of optimization to formalize prob-

lems. In fact, large parts of modern machine learning

are covered when referring to one of the many super-

vised or unsupervised learning objectives (losses, regu-

larizations, embedding costs, KL-minimization, etc). A

similar situation is found in the field of modern com-

puter vision, which largely builds on rigorous math-

ematical programming formulations, often suited for

GPU solvers.

This raises the question of why the use of optimality

principles has been so successful in these disciplines.

And whether robotics can benefit in similar ways from
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a wide-spread adaptation of optimization, beyond its

already established use.

To1 answer these questions we believe it is essential

to expand the discussion to include a more fundamental

level. We take the stance that the use of optimization

principles is merely a means to represent systems (as

explained in detail in the next section). This choice of

system representation is helpful if and only if it reflects

the structure of the problem domain. This is analogous

to machine learning, where a good representation must

reflect the structure of the underlying data distribution,

thus encoding a suitable prior to achieve generalization.

On the other hand, in contrast to machine learning, we

now apply this insight to evaluate the suitability of a

representation of robotic systems, instead of data.

In this paper, we therefore aim to discuss the use of

optimality principles in view of whether this allows us

to reflect the structure of robotics problems in a promis-

ing way. We believe that robotic systems are in some re-

spects different to typical machine learning or computer

vision “systems”. A robotic system is an embodied en-

tity that couples internal computational processes with

external processes (in the sense of ecology, as introduced

by the psychologist James J. Gibson) to generate task-

directed behavior. These internal computational pro-

cesses are of particular concern here and could in prin-

ciple be described using optimality principles. Whether

or not doing so promises the same progress as in other

disciplines will be examined in more detail in the re-

mainder of this paper.

Our answer to this question is ambivalent. We think

that robotics can benefit from following even more the

examples of machine learning and computer vision and

from describing integrated behavioral systems and prob-

lems via rigorous optimality principles. But at the same

time, we will point to reasons that integrated robotics

problems are structurally different to machine learning

(ML) and computer vision (CV) problems. These differ-

ences, we will argue, necessitate design principles that

may be difficult to capture in the context of optimiza-

tion formulations.

The ambivalence towards optimization opens up the

question: Are there other formalisms or principles that

are better suited for the development of robotic sys-

tems? Because they more aptly capture the inherent

1 With this formatting we will mark text that relates the
discussion back to the overarching argumentative flow.

structure that arises from coupling internal and ex-

ternal processes? We will also explore this question,

proposing alternatives and considering their suitability.

In the following section, we briefly elaborate on opti-

mization as a means of system representation. Section 3

collects some example areas within robotics where op-

timization approaches are well-established and led to

great progress, but also where they are questionable.

Section 4 aims to distill what might be a major issue

with describing robotic systems holistically via optimal-

ity principles. Section 5 discusses alternative design and

representation principles of robotic systems. Section 6

then considers the view that we should discuss the com-

putational processes used, of which optimization pro-

cesses are just one (special) example next to others.

Finally, section 7 will provide three separate con-

clusions from the individual authors, offering personal

perspectives on the Optimization Route to Robotics and

future research.

2 Optimization as a means of modeling systems

To appreciate the idea of using optimality principles

to represent systems, we take a brief digression into

physics. The path of a particle can be modeled as the

extremum of an action integral. Clearly, this is not

a normative statement about particles, or about the

“motivation” of particles. It is a mathematical tool to

concisely describe paths, simply an alternative to other

ways of describing it, such as a differential equation.

In other disciplines, psychologists or sociologists de-

scribe the behavior of humans and whole societies as
the extremum of some criteria. Again, the normative

interpretation, or the popular conclusion that humans

actively seek to “optimize” these criteria is misleading.

They just behave in a manner that can be modeled as

extremum to an objective. This shows that “being an

optimum” is entirely unrelated “being good” or “bad”.

Optimization is simply a method to describe systems.

Can every system—and therefore also robotic sys-

tems—be described in terms of optimality principles?

Clearly, yes! Feynman already pointed out that any

given set of equations (including all equations of physics)

can be (trivially) rewritten into a single large optimiza-

tion function (Feynman called its value the “unworld-

liness measure”) with a single global minimum exactly

when all equations are fulfilled (Feynman et al., 1963).
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Whether optimization principles are a good choice

to describe a robotic system is a very interesting ques-

tion. Why have optimality principles been such a great

tool to describe natural phenomena, particularly on the

physical level? In the introduction we mentioned that

one should judge any choice of representation based on

whether it allows us to capture the problem structure.

Can we identify the type of structure that can well be

reflected in formalisms for optimization? And thereby

identify the category of problems for which optimiza-

tion will be successful?

As in physics, optimality principles have become a

central means of describing systems in the context of

machine learning. This trend was a progression from

system modeling based on explicit rules, such as Hebb’s

rule, again analogously to differential equations in physics.

Today, most learning systems are described using objec-

tive functions. In fact, the discovery of suitable objec-

tives is a major outcome of machine learning research:

just as physics discovered discriptions of the path of

a particle, machine learning discovered discriptions of

what makes a good learner (i.e. what are priors, regular-

izations and losses that lead to well generalizing learn-

ing systems). Such objectives for instance include mix-

ing unsupervised objectives with supervised objectives

(semi-supervised learning) to improve the “quality” of

internal representations, e.g. as in deep learning Weston

et al. (2008). The success of machine learning can be

viewed as an indication that optimality principles allow

us to adequately capture structure in the types of data

prevalent in this domain (in terms of losses, regulariza-

tions, priors, etc).

In the next sections we will explore if optimization

principles have had—or possibly could have—the same

positive impact in the field of robotics. If they allow

for a similarly concise description of performing robotic

systems. If so, it could imply that these principles also

capture structure inherent to problems in robotics. If

not, we are faced with the challenge of characterizing

the structure of robotic problems and finding alterna-

tives approaches and principles, replacing or comple-

menting optimization as a representational and algo-

rithmic tool for the development of robotic systems.

3 Existing Optimality Approaches in Robotics

Let us briefly collect some examples from robotics where

optimization approaches have been particularly success-

ful or seem particularly problematic.

The whole field of control theory (let us include

Markov Decision Processes and Reinforcement Learn-

ing approaches with this) lays one of the most im-

portant foundations of robotics. What would robotics

be without inverse kinematics, operational space con-

trol, force control, etc.? Each of these can concisely be

described in terms of optimality principles2—but also

just in terms of their laws, of course. However it seems

without doubt that in the area of control (and learn-

ing/adaptive control) the optimality approach was very

successful as a method to develop a large variety of ef-

ficient solutions.

Optimization principles have also become a main-

stay of robot path generation, a very extensive area

of research. While sampling-based approaches, such as

Rapidly Exploring Random Trees and Probabilistic Road

Maps are the dominant method of choice, the opti-

mization view more recently led to a series of methods

(Ratliff et al., 2009; Toussaint, 2014) that are strong in

terms of speed in high-dimensional settings, but weak

in terms of global completeness, and therefore comple-

mentary to sampling-based methods.

Why are optimality principles so apt for these do-

mains? We hypothesize that they can very well reflect

core desirable properties of motion—esp. smoothness.

In fact, the optimality principles on top of the linear al-

gebra and the non-linear but smooth (Riemannian) ge-

ometry (of kinematics and dynamics) and metrics used

to describe desirable properties of controlled motion

seem to directly reflect the true physical structure of lo-

cal motion. For global aspects of motion, it seems that

optimality criteria are more problematic. This shows

once again that adequate ways of representing a prob-

lem should reflect the structure inherent to that prob-

lem.

Concerning the interaction with contacts (including

grasping) the situation is less clear. Early optimization-

based approaches to grasping (maximizing wrench clo-

sure) were fragile due to unrealistic assumptions about

the availability of exact models of hand and object as

well as highly precise actuation. In contrast, appro-

2 See (Laumond et al., 2015) for a non-technical introduc-
tion.
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priately chosen compliant control leads to significantly

more robustness, even when not making these assump-

tions. More recently, however, there is increasing effort

to more rigorously cope with contact interactions also

in optimization-based approaches: e.g. utilizing linear

complementary problem formulations within optimal

control through contacts (Posa et al., 2014) and phys-

ical simulation (Mordatch et al., 2012). While these

approaches do not (yet?) help for real-world grasping,

they do solve problems that would otherwise be incon-

ceivably to solve by hand-designed controllers (e.g. the

landing of an airplane on a wire (Moore et al., 2014)).

While we are not experts on walking, in our percep-

tion also here the optimization-based approaches make

more and more progress—in particular also because of

hardware developments that in fact bring the real sys-

tem closer to the theoretical models, such as direct

drives (Seok et al., 2013) and force control with hy-

draulic actuators.

We already mentioned the deficits of classical opti-

mal closure approaches to grasping. More modern ver-

sions of optimality approaches to grasping include al-

ternative measures to evaluate good grasping or caging

areas (including one of the authors (Zarubin et al.,

2013)), and rigorous POMDP approaches to generate

complex grasp behaviors (that include tactile explo-

ration to reduce uncertainties) (Koval et al., 2014). Still,

grasping experts would claim that hand-designed grasp

strategies that exploit hand morphology and compli-

ance largely outperform other approaches. One reason

is the lack of a precise model (including model uncer-

tainties) of the object and material to be grasped; a

second that even if we had a precise model, using it

to compute optimal grasp behaviors is computation-
ally complex and would typically not lead to robust-

ness against model errors, control uncertainties or un-

expected environment dynamics.

4 A potential core problem: decentralization &

modularity

It is interesting to note that the above examples of suc-

cess all concerned isolated sub-problems of robotics. In

contrast, it seems particularly hard to describe inte-

grated systems in terms of a single overall optimality

principles. The work by one of the authors (Toussaint,

2009) proposes an integrated architecture, describing

all system aspects in terms of a single objective func-

tion (more precisely, probabilistic inference). Such ap-

proaches suggest that, in fact, integration might be sim-

pler once all components have consistently been formu-

lated in terms of optimality principles as this is “just” a

problem of combining mathematical programs—instead

of a matter of software engineering. However, the prac-

tical challenges are enormous and the state-of-the-art

in robotic systems clearly does not point towards such

holistic optimality principles.

Why is it hard to describe integrated complex sys-

tems by means of an overall optimality principles? Inte-

grated robotic systems combine many modules, rely on

decentralized but coupled and concurrent computation,

control and decision making on various levels of repre-

sentation and abstraction. It is fair to think of such

systems as an aggregation of distributed sub-systems,

just like multi-agent systems.

Describing good behavior of distributed agents in

terms of a single central objective may be intricate in

multiple ways. First, deriving optimal agents from cen-

tral objective criteria (e.g. in the general framework

of DEC-POMDPs3) is NEXP-complete (Goldman and

Zilberstein, 2004). Further, while a central objective

might describe the system as a whole concisely, the re-

sulting (optimal) agent might be exceedingly difficult

to compute. The distributed agent scenario is an inter-

esting case, where we would like to describe and de-

sign each individual agent concisely (perhaps in terms

of a local objective function)—but also would like to

describe the resulting system behavior (perhaps as ap-

proximately following another optimality principle). The

relation between the local and system behavior becomes

the core question—and is the subject of game theory.4

Current advances on graphical games (Kearns et al.,

2001) make interesting progress on this, borrowing meth-

ods from probabilistic inference in graphical models.

In conclusion, for distributed agent systems the op-

timality approach comes with a series of follow-up prob-

lems—and the state-of-the-art practical solutions to such

3 decentralized partially observed Markov decision pro-
cesses
4 Translating from microscopic behavior (described in

terms of optimality principles) to the “effective” optimality
principles that describes the macroscopic behavior is one of
the most interesting and fundamental problems in science per
se. Renormalization, cooper pairs, superfluidity, and similar
macroscopic theories are examples of this endeavor—or of cir-
cumventing this endeavor (Laughlin, 2006).
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systems (network routing, swarm behaviors) are typi-

cally remote from optimality principles.

Integrated robotic soft- and hardware systems are in

many ways similar to distributed agent systems, which

discriminates robotics from the areas of machine learn-

ing and computer vision. In view of the above discus-

sion, it is therefore a fascinating question whether fu-

ture robotics research will develop holistic optimality

approaches to describe systems. To facilitate this dis-

cussion, we consider in the next section alternative de-

sign principles.

5 Alternative principles of system design

State-of-the-art robotic systems often involve a

number of “principles”, represented by diverse concrete

approaches such as subsumption architectures, dynamic

movement primitives, or hierarchical state machines. It

it interesting to discuss to what extent these principles

are incompatible or complementary with the optimiza-

tion stance and point towards alternative approaches to

represent systems. Some of the core principles are the

following.

Modularity & hierarchy: Modularity is one of the core

principles of designing complex integrated systems in

software and classical engineering. In robotics, hierar-

chical finite state machines to organize higher-level be-

havior, or hierarchically and concurrently combining

control attractors have been successful modular design

approaches. Further, robotic software systems crucially

rely on the current paradigms of software design, in-

cluding realizations of modularity. Successfully marry-

ing such principles with a holistic optimality approach

to systems is hard, as we discussed in the previous sec-

tion. A possible conclusion is to put more research effort

in our understanding how also modularly designed sys-

tems can well be represented by optimality principles—

or seek for other approaches as sketched in the next

section.

One of the pitfalls of modular and hierarchical sys-

tem representations is the multitude of possible per-

spectives. We are too easily fooled into thinking we are

doing everything correctly when our systems are modu-

lar and hierarchical. But, of course, modularity and hi-

erarchy are general and problem-agnostic concepts. The

key is to use modularity and hierarchy in a way that

reflects the structure of the problem we want to solve.

This is again consistent with our view that system rep-

resentations must reflect problem structure. The key

challenge thus must be to uncover this structure and

to appropriately reflect it in the hierarchical decompo-

sition of robotic systems. Historically, this decomposi-

tion has been into vision, control, planning, reasoning,

etc. It is conceivable that a perceived lack of progress

in robotics is a consequence of choosing a decomposi-

tion that lacks correspondence to the structure of the

problems roboticists would like to solve.

Stability & convergence: Dynamic movement primitives,

control attractors, control theory as a whole and other

approaches, esp. on the motor control level, typically

adhere to the principle that the involved processes should

guarantee stability and convergence. Many other inter-

esting (computational) processes also guarantee conver-

gence: the relaxation process of physical systems to low

(approx. Bethe) energy states (and inference in graph-

ical models), Hebbian adaptation, other learning rules

(e.g. gradient descent methods). Optimization processes

are also convergent and therefore at least a candidate

for the representation of stable and convergent compu-

tational processes. In fact, understanding the conver-

gence of a process via a Lyapunov function directly

casts the process as an optimization process. So we

think that the principles of stability and convergence

go well with the optimization stance.

Exploiting algorithmic computational power: The map-

ping from the objective function to the solution is highly

non-linear. Optimization processes therefore leverage

substantial computational power in the way they rep-

resent systems. This is similarly true for other process

representations, such as recurrent neural networks or

other complex recurrent system representations. How-

ever, while it seems obvious that algorithmic compu-

tational power is helpful in designing systems, explicit

computation may not be the only way to accomplish

this.

Exploiting morphological computational power: Compli-

ant hardware has proven to lead to advanced capabil-

ities in robotic manipulation. Whenever the task is to

get into contact with the environment, explicit mod-

eling and model-driven optimal design is problematic.

Instead, it seems that the inherent physical interac-

tion processes realized by morphologically clever de-

signs “compute” much better solutions. In these sys-
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tems, the optimization problem is solved in a distributed

fashion by the hardware itself. The task-specific opti-

mality criteria are encoded directly in the morphology

of embodiment. The interesting question is, of course,

how such clever morphological designs can be obtained?

Even though such designs seem to be currently out

of reach for approaches based on optimality, first re-

search efforts are underway to attempt exactly this: to

develop optimization methods for task-driven morpho-

logical computation.

Taking to heart the combinatorial explosion: Many prob-

lems in robotics have been proven to be too computa-

tionally difficult to solve exactly in a general setting.

This begins with motion planning for polygonal robots

among polygonal obstacles in the plane and reaches all

the way to inference in POMDPs. Taking this fact seri-

ously must have consequences on how we build systems.

Algorithmic concepts, such as completeness, provabil-

ity of convergence or correctness, etc., must loose their

importance. In cases where it is provably impossible to

devise general and provably correct algorithms, one has

to be content with algorithms that work well in the cir-

cumstances encountered most often. Furthermore, all

non-trivial proofs pertaining to interactions with the

real world make the unrealistic assumption of having

a perfect world model. We must realize that an algo-

rithm with provable performance under unrealistic as-

sumptions may perform much worse than a practical

but unproven algorithm.

6 Optimization functions vs. optimization

processes vs. processes in general

To make an optimization function useful (beyond its

communicating value) requires a computational pro-

cess to find the configuration that it implicitly spec-

ifies. It is an attractive feature that there exist very

general processes (e.g., hill climbing) that permit to lo-

cate extremal points for very many different optimiza-

tion functions. This may have pushed the role of the

optimization processes to the backstage (“they do not

matter so much...”) and the specification of a proper op-

timization function into the limelight. However, there

exists also a large body of research on how the opti-

mization processes themselves can be made computa-

tionally more efficient. This becomes increasingly in-

evitable for complex and high dimensional optimization

problems—which is the predominantly interesting case

for robotics. However, for significant efficiency gains the

general optimization algorithm usually has to be re-

placed by algorithms that are specialized for the type

of problem under consideration, which usually requires

significant ingenuity and can guarantee the efficiency

gains only for the problems within the considered class.

For instance, general solutions algorithms for linear op-

timization could require exponential computation time

on “unfavorable” problem instances, until the first algo-

rithm with polynomial scaling was discovered in 1979

(see, e.g. (Traub and Woźniakowski, 1982)) (and this

paved the way for the now widely used interior point

methods). Thus, for most optimization tasks we end up

with associating an optimization “function” with one

or several specialized “optimizing processes” that are

efficient.

We still may argue: the optimization function “sits

in the driver’s seat”, the process has to follow! But

lets look a bit closer at the roles of the two parts: the

optimization function specifies a solution, the process

specifies a solution path.5 For the case of a robot, of-

ten the solution path is the desired “product”: for in-

stance, when the robot is rejecting a disturbance to

restore an optimal configuration, we need in the first

place the process for that movement, and the underly-

ing cost function is important to the extent that it may

have enabled us to find a suitable process. But if we can

find a suitable process (or a good approximation) with-

out knowing the cost function, e.g., by some heuristics,

the outcome can be perfectly fine for the operation of

a robot!

At first sight, abandonment of a cost-function-driven
process generation may look less principled than start-

ing from a cost function. However, we all know that for

many movements it is rather painful to come up with a

cost function from which the movement can be derived.

Self-organizing maps provide a second example: while

the original algorithm in the form proposed by (Koho-

nen, 1982) was derived from heuristic considerations

and later shown to be not representable as the gradient

dynamics of a cost function, its great simplicity and ef-

ficiency has enabled it to become a very versatile tool

with numerous applications in robotics, data visualiza-

tion and classification. Some years after its introduc-

5 Of course, we could define objective functions over a so-
lution path as well; now desribing desirable optimization pro-
cesses in terms of optimality principles.
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tion, Heskes managed to construct a similarly behav-

ing algorithm (Heskes, 1999) that has the virtue of an

exact cost function, but at the price of introducing ad-

ditional computational complexity in the specification

of the map formation process, thereby losing the algo-

rithmic simplicity and computational efficiency of the

original, heuristic approach.

Multi-agent systems provide numerous further ex-

amples, where extremely simple rules can give rise to

exceedingly rich and complex behavior that appears as

hard or impossible to represent as the minimization of a

simple cost function. A prominent and well-known ex-

ample is Conway’s “game of life” which has been shown

to be computationally universal (Rendell, 2011) and

thus can mimic any dynamics, depending entirely on its

initial conditions (“the program”). An example closer

to robotics are the by now historic Braitenberg Vehicles

(Braitenberg, 1986), a multi-agent system of simple be-

having robots whose action emerged from their partic-

ular embodiment and simple sensor-actor connections.

These examples illustrate that there exist cases where

a shift of focus away from cost functions and towards

processes may lead to remarkable gains in simplicity

and efficiency. From this perspective, it should not come

as a surprise that state-of-the art robotics is actually

very strong in its direct specification of processes (ver-

sus cost functions) to create systems that work:

Dynamical movement primitives: The idea to generate

a motion from flexibly adjustable families of dynam-

ical systems (Schaal et al., 2005) has by now be-

come a major element in the standard tool set of

modern robotics. While some of the employed dy-

namical systems may be gradient dynamics of a cost

function, there is no need for such a constraint and

it is easily abandoned, e.g., to enable the control of

periodic movements, as required for walking.

Embodied computation moves part of the computation

into “the physics of the body” (Pfeifer and Gomez,

2009). While most often used to replace active con-

trol of kinematic or stiffness conditions through the

physics of a suitably designed material body, physi-

cal materials can offer much richer options: already

simple friction makes systems dynamics non-conser-

vative. More sophisticated material properties, such

as the hysteresis that occurs when an elastic mate-

rial bends, introduce effects that are hard or even

impossible to derive from simple cost functions, while

representations directly in terms of processes remain

feasible and appear very natural.

Hierarchical State Machines or the related Petri Nets

(Thomas et al., 2013; Murata, 1989) describe the

behavior of a system as transitions among the nodes

of a suitable graph, triggered through externally or

internally generated events. This is essentially a dis-

crete process representation, which may, but need

not, arise from the minimization of some underly-

ing cost function.

Behavior based architectures are related to HSMs: their

behavior emerges from the interaction of “basis be-

haviors” of a collection of “modules” or “agents”

that are coupled directly or through the environ-

ment (Arkin, 1998). Again, their basis behaviors

may be reasonably simple to describe, but the emerg-

ing collective behavior usually is difficult or impos-

sible to represent as some overarching minimization

task.

The cost function vs. process view can also be seen

mirrored in the two complementary programming para-

digms of imperative vs. functional programming: while

imperative programming languages require to code a

sequence of “statements” that provide a chain of steps

towards a goal, functional programming define the pro-

gram as a set of nested function calls whose evaluation

then provides the desired result. Languages such as Pro-

log come even closer to the cost function perspective

in that they just require to specify a number of con-

straints that need to be obeyed and then automatically

find variable assignments that meet these constraints.

We take all this as strong motivation to view the

optimization stance as a particular perspective that

deserves (and benefits from) being complemented by

a process perspective. In this “dual view” optimization

function view and process view offer complementary de-

scriptions of what a system does, and depending on the

case at hand and the given objectives, either one may

be superior to the other.

Below we juxtapose the two perspectives with re-

gard to some major aspects.

Explicitness: Cost functions specify succinctly a scalar

measure of goal achievement. As a result, they are

explicit at representing the level of performance of

a system. Moreover, to the extent that their algo-

rithm is human-readable, they offer an explicit ac-

count of how the performance of a system is speci-

fied. However, they encode the solution only implic-
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itly. This drawback is somewhat mitigated by the

fact that—if computational efficiency is not a prime

concern—often rather general and simple methods

allow to take the step from the cost function to a

solution instance. Processes specify succinctly how

a goal can be approached. As a result, they are ex-

plicit at representing the solution path, but at the

price of saying little or nothing about the attained

quality.

Benchmarking: Availability of a cost function makes

systems orderable by performance and solves the

otherwise difficult issue of benchmarking. However,

a general pair ordering (implementability of a “tour-

nament”) does not necessarily admit a linear order-

ing of a given set of objects (“A beats B, B beats

C, C beats A”): this again reflects the absence of a

global value function in the general case (while “lo-

cal” comparisons remain possible). This is not a lack

at the conceptual level, but a feature of the world

and points to the need of making cost functions con-

text dependent, with the context, e.g., given by an

opponent (or a population of robots). Multicriteria

optimization allows to implement this by having the

context choose the mixture weights of the different

criteria.

Interface: Cost functions are attractive through their

extremely simple 1-dimensional scalar interface: there-

by, they provide a very strong “compilation” of a

system’s behavior and summarize information. This

also allows to easily “hide” the implementation of a

cost function in black box, without destroying (but

perhaps reducing somewhat) its usefulness. In com-

parison, processes have an inherently more complex

interface: typically, they are about structure (and

their perhaps simplest incarnation is a state velocity

vector) and require a bit more work to encapsulate,

but this has become commonplace in today’s soft-

ware, which offers rich support to implement even

complex interfaces and create huge libraries of sub-

routine modules.

7 Conclusion

We provide pointed conclusions from the authors indi-

vidually.

7.1 By Marc Toussaint

We should further push optimization principles in robo-

tics and do research to overcome the raised issues!

I belief that the benefit of the optimization approach

as seen in machine learning and computer vision is

transferrable to robotics as well. But it is harder: we

need to achieve a holistic understanding of our systems,

which are more complex, but we will equally benefit if

we are able to transfer this understanding to holistic

optimality principles to represent systems.

Let me give a biased summary of the main state-

ments of this paper:

– Optimization principles should be viewed as a means

to represent systems. This is an important insight:

it clarifies that the optimization stance is a scientific

method, a means to represent our understanding of

natural and artificial systems systems! Following the

optimization stance does not mean to be obsessed

with performance; but perhaps (to relate to Oliver

Brock’s comment below) to be obsessed with a cer-

tain methodology that tries to describe systems very

concisely. But maybe this is a positive obsession.

– Whether this representational approach is benefi-

cial depends on whether it allows us to capture the

structure of the problem—an obvious truth. In our

case this means whether the roboticist can express

his or her understanding of the problem in a for-

mal objective function or prior over a well-defined

hypothesis space.

But what else could understanding possibly mean?

How else can we rigorously express the structure

of problems other than in terms of priors, objective

functions, and hypotheses spaces? Assuming that in

the future we better understood how we can leverage

the mentioned alternative principles to reflect the

structure of problems, will this understanding not

yet again be expressed in terms of objective func-

tions or priors, now over dynamic processes or over

morphologies or over behaviors? What better math-

ematical tools are there to express understanding?

– Certain optimality principles are infeasible to solve

computationally. But first, this does not corrupt

their scientific importance, provided they truly cap-

ture our understanding of the problem. And second,

we should work harder to approximate solutions or

find relaxations of the objective.
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– Given our current knowledge, the implications of

distributed optimization principles and processes to

describe multi-agent or modular systems raise hard

problems. But this should motivate research to bet-

ter understand distributed and hierarchical optimiza-

tion processes, their convergence and stability.

Robotics researchers should try to understand their

problems and express this understanding rigorously. In

my view, expression in terms of priors, objective func-

tions, and hypotheses spaces seems currently the most

promising way to express understanding.

The issues raised in this paper motivate highly in-

teresting future research. I find the questions around

optimality principles in distributed and hierarchically

organized systems particularly interesting and would

hope that advances on such questions will also advance

the state-of-the-art in robotics.

7.2 By Helge Ritter

The previous discussion showed us that optimization

functions and processes provide two different method-

ologies for describing a system: both connect given bound-

ary conditions (e.g., starting and goal configuration)

with a solution, but emphasize different representational

means.

Yet we may ask: can we go beyond this and arrive

at a stronger unifying perspective, in which processes

and optimization appear as particular representational

means that both serve a shared, overarching principle?

We are far from being able to provide a ready worked

out proposal for this, but we feel that some elements of

an overarching perspective are already within reach.

What the two representations share is a mechanism

for the generation of a solution. This mechanism is rep-

resented in two different ways: as a direct process vs. a

to-be-minimized scalar function. In robotics (but also

in other domains) both representations need to be “un-

folded” to bring the solution into existence: the process

requires the iterative/recursive application of a map-

ping that specifies its dynamics locally in (discrete or

continuous) time; the same holds for the optimization

approach (with time replaced by some abstract itera-

tion time)6

6 it should be noted that for the optimization approach the
result is always the end point of the generated trajectory,
while for the process approach either the end point or the
trajectory itself can be the result.

This “unfolding” points to a shared principle: the

encoding (implemented differently in the two approaches)

of a generator to perform the unfolding. Usually, this

generator is to be applied iteratively, and it can change

as a function of the iteration step or the current state

(equivalently, we may think of a set of generators, along

with a selector mechanism)7

Therefore, the unification may arise when we shift

the focus from the particular “generator encoding strate-

gies” to the more overarching question about the in-

trinsic structure of the appropriate generators and their

combination rules. This stance has a long and fruitful

history in mathematics (with the prime number theory,

group theory, fractals or linear algebra as prominent

examples) and also in physics (e.g., symmetry groups

as “generators” of motions or of elementary particles).

And it appears pervasive for many well-established meth-

ods in robotics: the generation of the reachable config-

uration space from a group of infinitesimal motions,

eigenvector bases or the kernel trick (these being ex-

amples in close connection to an extremal principle)

to span feature spaces, basis controllers to coordinate

robot degree of freedoms in response to external dis-

turbances (an example of the important situation to

consider generators embedded in a closed loop!), echo

state networks to generate a reservoir of dynamical fea-

tures, generative grammars to generate discrete struc-

tures (such as Lindenmayer systems for geometrical pat-

terns or the various string grammars to generate lan-

guages of varying complexity) and many more.

Such “generator stance” will share with the “opti-

mization stance” and the “process stance” the (easy

to obtain!) feature of universality. However, its deeper

merit will be the shift of perspective, away from par-

ticular representations to overarching aspects: what are

minimal sets of generators for a required behavior reper-

toire? How do different choices compare with regard

to robustness and information requirements? When are

two sets of generators equivalent? How can generators

be combined and organized into modular or hierarchi-

cal structures? Which generators commute, and which

do not? How can a set of generators be extended or

focused? And, connecting back to specific representa-

tions, what different representations for an equivalence

7 the “generative models” in statistics focus on the para-
metric specification of a probability density and do not par-
ticularly emphasize any process aspect.



10 Marc Toussaint et al.

class of generators can be found and what computa-

tional differences do they offer?

It appears that these (and more) questions may be

helpful for embedding the optimization stance and the

process stance in a larger landscape and could have use-

ful orienting potential when delving into the unknown

territory beyond optimization and heuristic process cre-

ation.

7.3 By Oliver Brock

At any point in time, a scientist (or roboticist) has

at his or her disposal a number of facts, theories, in-

sights, methodologies, ideologies, etc. Obviously, none

of these—let us call them tools—must be ignored. Only

if they are all considered can the scientist be sure to

have leveraged all possibilities for making progress. But

at the same time, one must be aware of the purpose

of available tools. Knowledge of purpose will enable

the scientist to make an adequate selection of tools

to be brought to bear on a specific problem. In many

ways, this knowledge is necessary, as there are too many

tools available to apply them all. (Interestingly, we have

found an explanation for prevalence of “method-monog-

amists” among the scientists!)

We now have returned to the mantra of this arti-

cle: the purpose of the tool must reflect the nature of

the problem. Put differently, the system’s representa-

tion must reflect structure inherent to the problem to

be solved. So far, I believe, we (the authors, and maybe

also the reader) are all in agreement.

In this article we have speculated on the suitabil-

ity of optimization principles (and some alternatives)

for solving problems in robotics. But our discussion of

the suitability of tools is moot in the absence of an un-

derstanding of the nature of the problem. How should

we judge if optimization principles can have a positive

impact on robotics? Yes, they may have had one in

machine learning. But do problems in robotics and ma-

chine learning share fundamental traits? Probably so,

but which ones? And which subcategories of problems

in robotics share them, as we certainly would not con-

sider it wise to approach all problems in robotics the

same way? Of course, we could just try them out. Many

people are doing this already. But is this appropriate

scientific behavior, or simply a motion through method-

ological fashions?

So then here is my main criticism: We are obsessed

with methodologies, philosophies, and overarching world

views. This is just one of the two sides we want to

match. To perform an appropriate matching between

representation and problem we must turn our attention

towards the problem! We must try to understand the

problem’s nature and its structure, chart the different

territories spanned by our discipline, determine a to-

pography and taxonomy of problems in robotics. Only

then will we be able to understand which tools are best

suited for which problems. Must we not admit that we

have a much deeper understanding of the principles of,

say, optimization than of the principles that govern the

behavior of a robotic system? The latter was defined

by us above as “an embodied entity that couples in-

ternal computational processes with external processes

to generate task-directed behavior”. The most pressing

problem in robotics is that we want to generate behavior

by coupling internal and external processes. It is not so

much our lack of understanding of different methodolo-

gies.

My proposal then is to view robotics as an empirical,

synthetic science of behavior, similar to what Paul Co-

hen suggested in the introduction to his book on Empir-

ical Methods for Artificial Intelligence (Cohen, 1995).

This endeavor will reveal the underlying structure of

problems pertaining to robotic systems and their task-

directed behavior when interacting with the world. And

then it will become easy to identify which methods we

should bring to bear and where to invest further en-

ergy in overcoming the many problems we will face, ir-

respective if we choose optimization principles as a tool

or some other methodology. First, we must overcome

our obsession with methods, which, I believe, only is

a disguise for the fear of truly difficult problems: the

problems of the real world, as opposed to the limited

worlds covered by any one of the tools we have at our

disposal and through whose glasses we have decided to

view our world.
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